|
| 1 | +# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"). You |
| 4 | +# may not use this file except in compliance with the License. A copy of |
| 5 | +# the License is located at |
| 6 | +# |
| 7 | +# http://aws.amazon.com/apache2.0/ |
| 8 | +# |
| 9 | +# or in the "license" file accompanying this file. This file is |
| 10 | +# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF |
| 11 | +# ANY KIND, either express or implied. See the License for the specific |
| 12 | +# language governing permissions and limitations under the License. |
| 13 | +from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase, registry |
| 14 | +from sagemaker.amazon.common import numpy_to_record_serializer, record_deserializer |
| 15 | +from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa |
| 16 | +from sagemaker.amazon.validation import ge, le, isin |
| 17 | +from sagemaker.predictor import RealTimePredictor |
| 18 | +from sagemaker.model import Model |
| 19 | +from sagemaker.session import Session |
| 20 | + |
| 21 | + |
| 22 | +class NTM(AmazonAlgorithmEstimatorBase): |
| 23 | + |
| 24 | + repo_name = 'ntm' |
| 25 | + repo_version = 1 |
| 26 | + |
| 27 | + num_topics = hp('num_topics', (ge(2), le(1000)), 'An integer in [2, 1000]', int) |
| 28 | + encoder_layers = hp(name='encoder_layers', validation_message='A comma separated list of ' |
| 29 | + 'positive integers', data_type=list) |
| 30 | + epochs = hp('epochs', (ge(1), le(100)), 'An integer in [1, 100]', int) |
| 31 | + encoder_layers_activation = hp('encoder_layers_activation', isin('sigmoid', 'tanh', 'relu'), |
| 32 | + 'One of "sigmoid", "tanh" or "relu"', str) |
| 33 | + optimizer = hp('optimizer', isin('adagrad', 'adam', 'rmsprop', 'sgd', 'adadelta'), |
| 34 | + 'One of "adagrad", "adam", "rmsprop", "sgd" and "adadelta"', str) |
| 35 | + tolerance = hp('tolerance', (ge(1e-6), le(0.1)), 'A float in [1e-6, 0.1]', float) |
| 36 | + num_patience_epochs = hp('num_patience_epochs', (ge(1), le(10)), 'An integer in [1, 10]', int) |
| 37 | + batch_norm = hp(name='batch_norm', validation_message='Value must be a boolean', data_type=bool) |
| 38 | + rescale_gradient = hp('rescale_gradient', (ge(1e-3), le(1.0)), 'A float in [1e-3, 1.0]', float) |
| 39 | + clip_gradient = hp('clip_gradient', ge(1e-3), 'A float greater equal to 1e-3', float) |
| 40 | + weight_decay = hp('weight_decay', (ge(0.0), le(1.0)), 'A float in [0.0, 1.0]', float) |
| 41 | + learning_rate = hp('learning_rate', (ge(1e-6), le(1.0)), 'A float in [1e-6, 1.0]', float) |
| 42 | + |
| 43 | + def __init__(self, role, train_instance_count, train_instance_type, num_topics, |
| 44 | + encoder_layers=None, epochs=None, encoder_layers_activation=None, optimizer=None, tolerance=None, |
| 45 | + num_patience_epochs=None, batch_norm=None, rescale_gradient=None, clip_gradient=None, |
| 46 | + weight_decay=None, learning_rate=None, **kwargs): |
| 47 | + """Neural Topic Model (NTM) is :class:`Estimator` used for unsupervised learning. |
| 48 | +
|
| 49 | + This Estimator may be fit via calls to |
| 50 | + :meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`. It requires Amazon |
| 51 | + :class:`~sagemaker.amazon.record_pb2.Record` protobuf serialized data to be stored in S3. |
| 52 | + There is an utility :meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set` that |
| 53 | + can be used to upload data to S3 and creates :class:`~sagemaker.amazon.amazon_estimator.RecordSet` to be passed |
| 54 | + to the `fit` call. |
| 55 | +
|
| 56 | + To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please |
| 57 | + consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html |
| 58 | +
|
| 59 | + After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker |
| 60 | + Endpoint by invoking :meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as deploying an Endpoint, |
| 61 | + deploy returns a :class:`~sagemaker.amazon.ntm.NTMPredictor` object that can be used |
| 62 | + for inference calls using the trained model hosted in the SageMaker Endpoint. |
| 63 | +
|
| 64 | + NTM Estimators can be configured by setting hyperparameters. The available hyperparameters for |
| 65 | + NTM are documented below. |
| 66 | +
|
| 67 | + For further information on the AWS NTM algorithm, |
| 68 | + please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/ntm.html |
| 69 | +
|
| 70 | + Args: |
| 71 | + role (str): An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and |
| 72 | + APIs that create Amazon SageMaker endpoints use this role to access |
| 73 | + training data and model artifacts. After the endpoint is created, |
| 74 | + the inference code might use the IAM role, if accessing AWS resource. |
| 75 | + train_instance_type (str): Type of EC2 instance to use for training, for example, 'ml.c4.xlarge'. |
| 76 | + num_topics (int): Required. The number of topics for NTM to find within the data. |
| 77 | + encoder_layers (list): Optional. Represents number of layers in the encoder and the output size of |
| 78 | + each layer. |
| 79 | + epochs (int): Optional. Maximum number of passes over the training data. |
| 80 | + encoder_layers_activation (str): Optional. Activation function to use in the encoder layers. |
| 81 | + optimizer (str): Optional. Optimizer to use for training. |
| 82 | + tolerance (float): Optional. Maximum relative change in the loss function within the last |
| 83 | + num_patience_epochs number of epochs below which early stopping is triggered. |
| 84 | + num_patience_epochs (int): Optional. Number of successive epochs over which early stopping criterion |
| 85 | + is evaluated. |
| 86 | + batch_norm (bool): Optional. Whether to use batch normalization during training. |
| 87 | + rescale_gradient (float): Optional. Rescale factor for gradient. |
| 88 | + clip_gradient (float): Optional. Maximum magnitude for each gradient component. |
| 89 | + weight_decay (float): Optional. Weight decay coefficient. Adds L2 regularization. |
| 90 | + learning_rate (float): Optional. Learning rate for the optimizer. |
| 91 | + **kwargs: base class keyword argument values. |
| 92 | + """ |
| 93 | + |
| 94 | + super(NTM, self).__init__(role, train_instance_count, train_instance_type, **kwargs) |
| 95 | + self.num_topics = num_topics |
| 96 | + self.encoder_layers = encoder_layers |
| 97 | + self.epochs = epochs |
| 98 | + self.encoder_layers_activation = encoder_layers_activation |
| 99 | + self.optimizer = optimizer |
| 100 | + self.tolerance = tolerance |
| 101 | + self.num_patience_epochs = num_patience_epochs |
| 102 | + self.batch_norm = batch_norm |
| 103 | + self.rescale_gradient = rescale_gradient |
| 104 | + self.clip_gradient = clip_gradient |
| 105 | + self.weight_decay = weight_decay |
| 106 | + self.learning_rate = learning_rate |
| 107 | + |
| 108 | + def create_model(self): |
| 109 | + """Return a :class:`~sagemaker.amazon.NTMModel` referencing the latest |
| 110 | + s3 model data produced by this Estimator.""" |
| 111 | + |
| 112 | + return NTMModel(self.model_data, self.role, sagemaker_session=self.sagemaker_session) |
| 113 | + |
| 114 | + def fit(self, records, mini_batch_size=None, **kwargs): |
| 115 | + if mini_batch_size is not None and (mini_batch_size < 1 or mini_batch_size > 10000): |
| 116 | + raise ValueError("mini_batch_size must be in [1, 10000]") |
| 117 | + super(NTM, self).fit(records, mini_batch_size, **kwargs) |
| 118 | + |
| 119 | + |
| 120 | +class NTMPredictor(RealTimePredictor): |
| 121 | + """Transforms input vectors to lower-dimesional representations. |
| 122 | +
|
| 123 | + The implementation of :meth:`~sagemaker.predictor.RealTimePredictor.predict` in this |
| 124 | + `RealTimePredictor` requires a numpy ``ndarray`` as input. The array should contain the |
| 125 | + same number of columns as the feature-dimension of the data used to fit the model this |
| 126 | + Predictor performs inference on. |
| 127 | +
|
| 128 | + :meth:`predict()` returns a list of :class:`~sagemaker.amazon.record_pb2.Record` objects, one |
| 129 | + for each row in the input ``ndarray``. The lower dimension vector result is stored in the ``projection`` |
| 130 | + key of the ``Record.label`` field.""" |
| 131 | + |
| 132 | + def __init__(self, endpoint, sagemaker_session=None): |
| 133 | + super(NTMPredictor, self).__init__(endpoint, sagemaker_session, serializer=numpy_to_record_serializer(), |
| 134 | + deserializer=record_deserializer()) |
| 135 | + |
| 136 | + |
| 137 | +class NTMModel(Model): |
| 138 | + """Reference NTM s3 model data. Calling :meth:`~sagemaker.model.Model.deploy` creates an Endpoint and return |
| 139 | + a Predictor that transforms vectors to a lower-dimensional representation.""" |
| 140 | + |
| 141 | + def __init__(self, model_data, role, sagemaker_session=None): |
| 142 | + sagemaker_session = sagemaker_session or Session() |
| 143 | + repo = '{}:{}'.format(NTM.repo_name, NTM.repo_version) |
| 144 | + image = '{}/{}'.format(registry(sagemaker_session.boto_session.region_name, NTM.repo_name), repo) |
| 145 | + super(NTMModel, self).__init__(model_data, image, role, predictor_cls=NTMPredictor, |
| 146 | + sagemaker_session=sagemaker_session) |
0 commit comments