Skip to content

Commit 78495df

Browse files
authored
doc: consolidate framework version and image information (#1522)
This changes the following: - for MXNet, TF, and PyTorch, the docs point to the DLC documentation - for RL, the docs point to the sagemaker-rl-container repository - for Chainer, src/sagemaker/chainer/README.rst has been removed in favor of doc/using_chainer.rst
1 parent 762b509 commit 78495df

File tree

11 files changed

+100
-547
lines changed

11 files changed

+100
-547
lines changed

README.rst

+25-137
Original file line numberDiff line numberDiff line change
@@ -39,31 +39,31 @@ For detailed API reference please go to: `Read the Docs <https://sagemaker.readt
3939
Table of Contents
4040
-----------------
4141

42-
1. `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk>`__
43-
2. `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html>`__
44-
3. `MXNet SageMaker Estimators <#mxnet-sagemaker-estimators>`__
45-
4. `TensorFlow SageMaker Estimators <#tensorflow-sagemaker-estimators>`__
46-
5. `Chainer SageMaker Estimators <#chainer-sagemaker-estimators>`__
47-
6. `PyTorch SageMaker Estimators <#pytorch-sagemaker-estimators>`__
48-
7. `Scikit-learn SageMaker Estimators <#scikit-learn-sagemaker-estimators>`__
49-
8. `XGBoost SageMaker Estimators <#xgboost-sagemaker-estimators>`__
50-
9. `SageMaker Reinforcement Learning Estimators <#sagemaker-reinforcement-learning-estimators>`__
51-
10. `SageMaker SparkML Serving <#sagemaker-sparkml-serving>`__
52-
11. `AWS SageMaker Estimators <#aws-sagemaker-estimators>`__
53-
12. `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators>`__
54-
13. `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages>`__
55-
14. `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators>`__
56-
15. `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning>`__
57-
16. `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform>`__
58-
17. `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc>`__
59-
18. `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model>`__
60-
19. `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines>`__
61-
20. `Amazon SageMaker Operators for Kubernetes <#amazon-sagemaker-operators-for-kubernetes>`__
62-
21. `Amazon SageMaker Operators in Apache Airflow <#sagemaker-workflow>`__
63-
22. `SageMaker Autopilot <#sagemaker-autopilot>`__
64-
23. `Model Monitoring <#amazon-sagemaker-model-monitoring>`__
65-
24. `SageMaker Debugger <#amazon-sagemaker-debugger>`__
66-
25. `SageMaker Processing <#amazon-sagemaker-processing>`__
42+
#. `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk>`__
43+
#. `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html>`__
44+
#. `Using MXNet <https://sagemaker.readthedocs.io/en/stable/using_mxnet.html>`__
45+
#. `Using TensorFlow <https://sagemaker.readthedocs.io/en/stable/using_tf.html>`__
46+
#. `Using Chainer <https://sagemaker.readthedocs.io/en/stable/using_chainer.html>`__
47+
#. `Using PyTorch <https://sagemaker.readthedocs.io/en/stable/using_pytorch.html>`__
48+
#. `Scikit-learn SageMaker Estimators <#scikit-learn-sagemaker-estimators>`__
49+
#. `XGBoost SageMaker Estimators <#xgboost-sagemaker-estimators>`__
50+
#. `SageMaker Reinforcement Learning Estimators <https://sagemaker.readthedocs.io/en/stable/using_rl.html>`__
51+
#. `SageMaker SparkML Serving <#sagemaker-sparkml-serving>`__
52+
#. `AWS SageMaker Estimators <#aws-sagemaker-estimators>`__
53+
#. `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators>`__
54+
#. `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages>`__
55+
#. `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators>`__
56+
#. `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning>`__
57+
#. `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform>`__
58+
#. `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc>`__
59+
#. `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model>`__
60+
#. `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines>`__
61+
#. `Amazon SageMaker Operators for Kubernetes <#amazon-sagemaker-operators-for-kubernetes>`__
62+
#. `Amazon SageMaker Operators in Apache Airflow <#sagemaker-workflow>`__
63+
#. `SageMaker Autopilot <#sagemaker-autopilot>`__
64+
#. `Model Monitoring <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html>`__
65+
#. `SageMaker Debugger <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html>`__
66+
#. `SageMaker Processing <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html>`__
6767

6868

6969
Installing the SageMaker Python SDK
@@ -197,73 +197,6 @@ Preview the site with a Python web server:
197197

198198
View the website by visiting http://localhost:8000
199199

200-
201-
MXNet SageMaker Estimators
202-
--------------------------
203-
204-
By using MXNet SageMaker Estimators, you can train and host MXNet models on Amazon SageMaker.
205-
206-
Supported versions of MXNet: ``0.12.1``, ``1.0.0``, ``1.1.0``, ``1.2.1``, ``1.3.0``, ``1.4.0``, ``1.4.1``, ``1.6.0``.
207-
208-
Supported versions of MXNet for Elastic Inference: ``1.3.0``, ``1.4.0``, ``1.4.1``, ``1.5.1``.
209-
210-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
211-
212-
For more information, see `Using MXNet with the SageMaker Python SDK`_.
213-
214-
.. _Using MXNet with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
215-
216-
217-
TensorFlow SageMaker Estimators
218-
-------------------------------
219-
220-
By using TensorFlow SageMaker Estimators, you can train and host TensorFlow models on Amazon SageMaker.
221-
222-
Supported versions of TensorFlow: ``1.4.1``, ``1.5.0``, ``1.6.0``, ``1.7.0``, ``1.8.0``, ``1.9.0``, ``1.10.0``, ``1.11.0``, ``1.12.0``, ``1.13.1``, ``1.14.0``, ``1.15.0``, ``1.15.2``, ``2.0.0``, ``2.0.1``, ``2.1.0``.
223-
224-
Supported versions of TensorFlow for Elastic Inference: ``1.11.0``, ``1.12.0``, ``1.13.1``, ``1.14.0``, ``1.15.0``, ``2.0.0``.
225-
226-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
227-
228-
For more information, see `Using TensorFlow with the SageMaker Python SDK`_.
229-
230-
.. _Using TensorFlow with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_tf.html
231-
232-
233-
Chainer SageMaker Estimators
234-
----------------------------
235-
236-
By using Chainer SageMaker Estimators, you can train and host Chainer models on Amazon SageMaker.
237-
238-
Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``.
239-
240-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
241-
242-
For more information about Chainer, see https://github.com/chainer/chainer.
243-
244-
For more information about Chainer SageMaker Estimators, see `Using Chainer with the SageMaker Python SDK`_.
245-
246-
.. _Using Chainer with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_chainer.html
247-
248-
249-
PyTorch SageMaker Estimators
250-
----------------------------
251-
252-
With PyTorch SageMaker Estimators, you can train and host PyTorch models on Amazon SageMaker.
253-
254-
Supported versions of PyTorch: ``0.4.0``, ``1.0.0``, ``1.1.0``, ``1.2.0``, ``1.3.1``, ``1.4.0``, ``1.5.0``.
255-
256-
Supported versions of PyTorch for Elastic Inference: ``1.3.1``.
257-
258-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
259-
260-
For more information about PyTorch, see https://github.com/pytorch/pytorch.
261-
262-
For more information about PyTorch SageMaker Estimators, see `Using PyTorch with the SageMaker Python SDK`_.
263-
264-
.. _Using PyTorch with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_pytorch.html
265-
266-
267200
Scikit-learn SageMaker Estimators
268201
---------------------------------
269202

@@ -295,22 +228,6 @@ For more information about XGBoost SageMaker Estimators, see `Using XGBoost with
295228
.. _Using XGBoost with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_xgboost.html
296229

297230

298-
SageMaker Reinforcement Learning Estimators
299-
-------------------------------------------
300-
301-
With Reinforcement Learning (RL) Estimators, you can use reinforcement learning to train models on Amazon SageMaker.
302-
303-
Supported versions of Coach: ``0.10.1``, ``0.11.1`` with TensorFlow, ``0.11.0`` with TensorFlow or MXNet.
304-
For more information about Coach, see https://github.com/NervanaSystems/coach
305-
306-
Supported versions of Ray: ``0.5.3``, ``0.6.5`` with TensorFlow.
307-
For more information about Ray, see https://github.com/ray-project/ray
308-
309-
For more information about SageMaker RL Estimators, see `SageMaker Reinforcement Learning Estimators`_.
310-
311-
.. _SageMaker Reinforcement Learning Estimators: src/sagemaker/rl/README.rst
312-
313-
314231
SageMaker SparkML Serving
315232
-------------------------
316233

@@ -385,32 +302,3 @@ on your data, and hosts a series of models on an Inference Pipeline.
385302
For more information about SageMaker Autopilot, see `SageMaker Autopilot`_.
386303

387304
.. _SageMaker Autopilot: src/sagemaker/automl/README.rst
388-
389-
Amazon SageMaker Model Monitoring
390-
---------------------------------
391-
392-
You can use Amazon SageMaker Model Monitoring to automatically detect concept drift by monitoring your machine learning models.
393-
394-
For more information, see `Amazon SageMaker Model Monitoring`_.
395-
396-
.. _Amazon SageMaker Model Monitoring: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html
397-
398-
Amazon SageMaker Debugger
399-
-------------------------
400-
401-
You can use Amazon SageMaker Debugger to automatically detect anomalies while training your machine learning models.
402-
403-
For more information, see `Amazon SageMaker Debugger`_.
404-
405-
.. _Amazon SageMaker Debugger: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html
406-
407-
408-
Amazon SageMaker Processing
409-
---------------------------------
410-
411-
You can use Amazon SageMaker Processing to perform data processing tasks such as data pre- and post-processing, feature engineering, data validation, and model evaluation
412-
413-
414-
For more information, see `Amazon SageMaker Processing`_.
415-
416-
.. _Amazon SageMaker Processing: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html

doc/using_chainer.rst

+53-4
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,11 @@ Using Chainer with the SageMaker Python SDK
44

55
With Chainer Estimators, you can train and host Chainer models on Amazon SageMaker.
66

7-
For information about supported versions of Chainer, see the `Chainer README <https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/chainer/README.rst>`__.
7+
Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``.
8+
9+
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
10+
11+
For more information about Chainer, see https://github.com/chainer/chainer.
812

913
For general information about using the SageMaker Python SDK, see :ref:`overview:Using the SageMaker Python SDK`.
1014

@@ -638,6 +642,51 @@ The following are optional arguments. When you create a ``Chainer`` object, you
638642
SageMaker Chainer Docker containers
639643
***********************************
640644

641-
You can visit the SageMaker Chainer containers repository here: https://github.com/aws/sagemaker-chainer-container
642-
643-
For information about SageMaker Chainer Docker containers and their dependencies, see `SageMaker Chainer Docker containers <https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/chainer#sagemaker-chainer-docker-containers>`_.
645+
When training and deploying training scripts, SageMaker runs your Python script in a Docker container with several
646+
libraries installed. When creating the Estimator and calling deploy to create the SageMaker Endpoint, you can control
647+
the environment your script runs in.
648+
649+
SageMaker runs Chainer Estimator scripts in either Python 2.7 or Python 3.5. You can select the Python version by
650+
passing a py_version keyword arg to the Chainer Estimator constructor. Setting this to py3 (the default) will cause your
651+
training script to be run on Python 3.5. Setting this to py2 will cause your training script to be run on Python 2.7
652+
This Python version applies to both the Training Job, created by fit, and the Endpoint, created by deploy.
653+
654+
The Chainer Docker images have the following dependencies installed:
655+
656+
+-----------------------------+-------------+-------------+-------------+
657+
| Dependencies | chainer 4.0 | chainer 4.1 | chainer 5.0 |
658+
+-----------------------------+-------------+-------------+-------------+
659+
| chainer | 4.0.0 | 4.1.0 | 5.0.0 |
660+
+-----------------------------+-------------+-------------+-------------+
661+
| chainercv | 0.9.0 | 0.10.0 | 0.10.0 |
662+
+-----------------------------+-------------+-------------+-------------+
663+
| chainermn | 1.2.0 | 1.3.0 | N/A |
664+
+-----------------------------+-------------+-------------+-------------+
665+
| CUDA (GPU image only) | 9.0 | 9.0 | 9.0 |
666+
+-----------------------------+-------------+-------------+-------------+
667+
| cupy | 4.0.0 | 4.1.0 | 5.0.0 |
668+
+-----------------------------+-------------+-------------+-------------+
669+
| matplotlib | 2.2.0 | 2.2.0 | 2.2.0 |
670+
+-----------------------------+-------------+-------------+-------------+
671+
| mpi4py | 3.0.0 | 3.0.0 | 3.0.0 |
672+
+-----------------------------+-------------+-------------+-------------+
673+
| numpy | 1.14.3 | 1.15.3 | 1.15.4 |
674+
+-----------------------------+-------------+-------------+-------------+
675+
| opencv-python | 3.4.0.12 | 3.4.0.12 | 3.4.0.12 |
676+
+-----------------------------+-------------+-------------+-------------+
677+
| Pillow | 5.1.0 | 5.3.0 | 5.3.0 |
678+
+-----------------------------+-------------+-------------+-------------+
679+
| Python | 2.7 or 3.5 | 2.7 or 3.5 | 2.7 or 3.5 |
680+
+-----------------------------+-------------+-------------+-------------+
681+
682+
The Docker images extend Ubuntu 16.04.
683+
684+
You must select a version of Chainer by passing a ``framework_version`` keyword arg to the Chainer Estimator
685+
constructor. Currently supported versions are listed in the above table. You can also set framework_version to only
686+
specify major and minor version, which will cause your training script to be run on the latest supported patch
687+
version of that minor version.
688+
689+
Alternatively, you can build your own image by following the instructions in the SageMaker Chainer containers
690+
repository, and passing ``image_name`` to the Chainer Estimator constructor.
691+
692+
You can visit the SageMaker Chainer containers repository at https://github.com/aws/sagemaker-chainer-container

doc/using_mxnet.rst

+8-6
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,9 @@ Use MXNet with the SageMaker Python SDK
44

55
With the SageMaker Python SDK, you can train and host MXNet models on Amazon SageMaker.
66

7-
For information about supported versions of MXNet, see the `MXNet README <https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/README.rst>`__.
7+
For information about supported versions of MXNet, see the `AWS documentation <https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-images.html>`__.
8+
9+
We recommend that you use the latest supported version because that's where we focus our development efforts.
810

911
For general information about using the SageMaker Python SDK, see :ref:`overview:Using the SageMaker Python SDK`.
1012

@@ -807,9 +809,9 @@ For information about the different MXNet-related classes in the SageMaker Pytho
807809
SageMaker MXNet Containers
808810
**************************
809811

810-
For information about SageMaker MXNet containers, see the following topics:
811-
812-
- training: https://github.com/aws/sagemaker-mxnet-container
813-
- serving: https://github.com/aws/sagemaker-mxnet-serving-container
812+
For information about the SageMaker MXNet containers, see:
814813

815-
For information about the dependencies installed in SageMaker MXNet containers, see https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/mxnet/README.rst#sagemaker-mxnet-containers.
814+
- `SageMaker MXNet training toolkit <https://github.com/aws/sagemaker-mxnet-container>`_
815+
- `SageMaker MXNet serving toolkit <https://github.com/aws/sagemaker-mxnet-serving-container>`_
816+
- `Deep Learning Container (DLC) Dockerfiles for MXNet <https://github.com/aws/deep-learning-containers/tree/master/mxnet>`_
817+
- `Deep Learning Container (DLC) Images <https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-images.html>`_ and `release notes <https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html>`_

doc/using_pytorch.rst

+6-5
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,7 @@ Using PyTorch with the SageMaker Python SDK
44

55
With PyTorch Estimators and Models, you can train and host PyTorch models on Amazon SageMaker.
66

7-
Supported versions of PyTorch: ``0.4.0``, ``1.0.0``, ``1.1.0``, ``1.2.0``, ``1.3.1``, ``1.4.0``, ``1.5.0``.
8-
9-
Supported versions of PyTorch for Elastic Inference: ``1.3.1``.
7+
For information about supported versions of PyTorch, see the `AWS documentation <https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-images.html>`__.
108

119
We recommend that you use the latest supported version because that's where we focus our development efforts.
1210

@@ -758,6 +756,9 @@ The following are optional arguments. When you create a ``PyTorch`` object, you
758756
SageMaker PyTorch Docker Containers
759757
***********************************
760758

761-
For information about SageMaker PyTorch containers, see `the SageMaker PyTorch container repository <https://github.com/aws/sagemaker-pytorch-container>`_ and `SageMaker PyTorch Serving container repository <https://github.com/aws/sagemaker-pytorch-serving-container>`__.
759+
For information about the SageMaker PyTorch containers, see:
762760

763-
For information about SageMaker PyTorch container dependencies, see `SageMaker PyTorch Containers <https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/pytorch#sagemaker-pytorch-docker-containers>`_.
761+
- `SageMaker PyTorch training toolkit <https://github.com/aws/sagemaker-pytorch-container>`_
762+
- `SageMaker PyTorch serving toolkit <https://github.com/aws/sagemaker-pytorch-serving-container>`_
763+
- `Deep Learning Container (DLC) Dockerfiles for PyTorch <https://github.com/aws/deep-learning-containers/tree/master/pytorch>`_
764+
- `Deep Learning Container (DLC) Images <https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-images.html>`_ and `release notes <https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/dlc-release-notes.html>`_

0 commit comments

Comments
 (0)