@@ -1369,15 +1369,139 @@ def run_explainability(
1369
1369
experiment_config ,
1370
1370
)
1371
1371
1372
- def run_bias_and_explainability (self ):
1373
- """
1374
- TODO:
1375
- - add doc string
1376
- - add logic
1377
- - add tests
1378
- """
1379
- raise NotImplementedError (
1380
- "Please choose a method of run_pre_training_bias, run_post_training_bias or run_explainability."
1372
+ def run_bias_and_explainability (
1373
+ self ,
1374
+ data_config : DataConfig ,
1375
+ model_config : ModelConfig ,
1376
+ explainability_config : Union [ExplainabilityConfig , List [ExplainabilityConfig ]],
1377
+ bias_config : BiasConfig ,
1378
+ pre_training_methods : Union [str , List [str ]] = "all" ,
1379
+ post_training_methods : Union [str , List [str ]] = "all" ,
1380
+ model_predicted_label_config : ModelPredictedLabelConfig = None ,
1381
+ wait = True ,
1382
+ logs = True ,
1383
+ job_name = None ,
1384
+ kms_key = None ,
1385
+ experiment_config = None ,
1386
+ ):
1387
+ """Runs a :class:`~sagemaker.processing.ProcessingJob` computing feature attributions.
1388
+
1389
+ For bias:
1390
+ Computes metrics for both the pre-training and the post-training methods.
1391
+ To calculate post-training methods, it spins up a model endpoint and runs inference over the
1392
+ input examples in 's3_data_input_path' (from the :class:`~sagemaker.clarify.DataConfig`)
1393
+ to obtain predicted labels.
1394
+
1395
+ For Explainability:
1396
+ Spins up a model endpoint.
1397
+
1398
+ Currently, only SHAP and Partial Dependence Plots (PDP) are supported
1399
+ as explainability methods.
1400
+ You can request both methods or one at a time with the ``explainability_config`` parameter.
1401
+
1402
+ When SHAP is requested in the ``explainability_config``,
1403
+ the SHAP algorithm calculates the feature importance for each input example
1404
+ in the ``s3_data_input_path`` of the :class:`~sagemaker.clarify.DataConfig`,
1405
+ by creating ``num_samples`` copies of the example with a subset of features
1406
+ replaced with values from the ``baseline``.
1407
+ It then runs model inference to see how the model's prediction changes with the replaced
1408
+ features. If the model output returns multiple scores importance is computed for each score.
1409
+ Across examples, feature importance is aggregated using ``agg_method``.
1410
+
1411
+ When PDP is requested in the ``explainability_config``,
1412
+ the PDP algorithm calculates the dependence of the target response
1413
+ on the input features and marginalizes over the values of all other input features.
1414
+ The Partial Dependence Plots are included in the output
1415
+ `report <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-feature-attribute-baselines-reports.html>`__
1416
+ and the corresponding values are included in the analysis output.
1417
+
1418
+ Args:
1419
+ data_config (:class:`~sagemaker.clarify.DataConfig`): Config of the input/output data.
1420
+ model_config (:class:`~sagemaker.clarify.ModelConfig`): Config of the model and its
1421
+ endpoint to be created.
1422
+ explainability_config (:class:`~sagemaker.clarify.ExplainabilityConfig` or list):
1423
+ Config of the specific explainability method or a list of
1424
+ :class:`~sagemaker.clarify.ExplainabilityConfig` objects.
1425
+ Currently, SHAP and PDP are the two methods supported.
1426
+ You can request multiple methods at once by passing in a list of
1427
+ `~sagemaker.clarify.ExplainabilityConfig`.
1428
+ bias_config (:class:`~sagemaker.clarify.BiasConfig`): Config of sensitive groups.
1429
+ pre_training_methods (str or list[str]): Selector of a subset of potential metrics:
1430
+ ["`CI <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-bias-metric-class-imbalance.html>`_",
1431
+ "`DPL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-true-label-imbalance.html>`_",
1432
+ "`KL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-kl-divergence.html>`_",
1433
+ "`JS <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-jensen-shannon-divergence.html>`_",
1434
+ "`LP <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-lp-norm.html>`_",
1435
+ "`TVD <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-total-variation-distance.html>`_",
1436
+ "`KS <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-kolmogorov-smirnov.html>`_",
1437
+ "`CDDL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-data-bias-metric-cddl.html>`_"].
1438
+ Defaults to str "all" to run all metrics if left unspecified.
1439
+ post_training_methods (str or list[str]): Selector of a subset of potential metrics:
1440
+ ["`DPPL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dppl.html>`_"
1441
+ , "`DI <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-di.html>`_",
1442
+ "`DCA <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dca.html>`_",
1443
+ "`DCR <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dcr.html>`_",
1444
+ "`RD <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-rd.html>`_",
1445
+ "`DAR <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-dar.html>`_",
1446
+ "`DRR <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-drr.html>`_",
1447
+ "`AD <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-ad.html>`_",
1448
+ "`CDDPL <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-cddpl.html>`_
1449
+ ", "`TE <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-te.html>`_",
1450
+ "`FT <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-ft.html>`_"].
1451
+ Defaults to str "all" to run all metrics if left unspecified.
1452
+ model_predicted_label_config (
1453
+ int or
1454
+ str or
1455
+ :class:`~sagemaker.clarify.ModelPredictedLabelConfig`
1456
+ ):
1457
+ Index or JSONPath to locate the predicted scores in the model output. This is not
1458
+ required if the model output is a single score. Alternatively, it can be an instance
1459
+ of :class:`~sagemaker.clarify.SageMakerClarifyProcessor`
1460
+ to provide more parameters like ``label_headers``.
1461
+ wait (bool): Whether the call should wait until the job completes (default: True).
1462
+ logs (bool): Whether to show the logs produced by the job.
1463
+ Only meaningful when ``wait`` is True (default: True).
1464
+ job_name (str): Processing job name. When ``job_name`` is not specified,
1465
+ if ``job_name_prefix`` in :class:`~sagemaker.clarify.SageMakerClarifyProcessor`
1466
+ is specified, the job name will be composed of ``job_name_prefix`` and current
1467
+ timestamp; otherwise use ``"Clarify-Explainability"`` as prefix.
1468
+ kms_key (str): The ARN of the KMS key that is used to encrypt the
1469
+ user code file (default: None).
1470
+ experiment_config (dict[str, str]): Experiment management configuration.
1471
+ Optionally, the dict can contain three keys:
1472
+ ``'ExperimentName'``, ``'TrialName'``, and ``'TrialComponentDisplayName'``.
1473
+
1474
+ The behavior of setting these keys is as follows:
1475
+
1476
+ * If ``'ExperimentName'`` is supplied but ``'TrialName'`` is not, a Trial will be
1477
+ automatically created and the job's Trial Component associated with the Trial.
1478
+ * If ``'TrialName'`` is supplied and the Trial already exists,
1479
+ the job's Trial Component will be associated with the Trial.
1480
+ * If both ``'ExperimentName'`` and ``'TrialName'`` are not supplied,
1481
+ the Trial Component will be unassociated.
1482
+ * ``'TrialComponentDisplayName'`` is used for display in Amazon SageMaker Studio.
1483
+ """ # noqa E501 # pylint: disable=c0301
1484
+ analysis_config = _AnalysisConfigGenerator .bias_and_explainability (
1485
+ data_config ,
1486
+ model_config ,
1487
+ model_predicted_label_config ,
1488
+ explainability_config ,
1489
+ bias_config ,
1490
+ pre_training_methods ,
1491
+ post_training_methods ,
1492
+ )
1493
+ # when name is either not provided (is None) or an empty string ("")
1494
+ job_name = job_name or utils .name_from_base (
1495
+ self .job_name_prefix or "Clarify-Bias-And-Explainability"
1496
+ )
1497
+ return self ._run (
1498
+ data_config ,
1499
+ analysis_config ,
1500
+ wait ,
1501
+ logs ,
1502
+ job_name ,
1503
+ kms_key ,
1504
+ experiment_config ,
1381
1505
)
1382
1506
1383
1507
@@ -1395,6 +1519,7 @@ def bias_and_explainability(
1395
1519
pre_training_methods : Union [str , List [str ]] = "all" ,
1396
1520
post_training_methods : Union [str , List [str ]] = "all" ,
1397
1521
):
1522
+ """Generates a config for Bias and Explainability"""
1398
1523
analysis_config = {** data_config .get_config (), ** bias_config .get_config ()}
1399
1524
analysis_config = cls ._add_methods (
1400
1525
analysis_config ,
@@ -1475,6 +1600,7 @@ def bias(
1475
1600
1476
1601
@classmethod
1477
1602
def _add_predictor (cls , analysis_config , model_config , model_predicted_label_config ):
1603
+ """Extends analysis config with predictor."""
1478
1604
analysis_config = {** analysis_config }
1479
1605
analysis_config ["predictor" ] = model_config .get_predictor_config ()
1480
1606
if isinstance (model_predicted_label_config , ModelPredictedLabelConfig ):
@@ -1498,12 +1624,14 @@ def _add_methods(
1498
1624
explainability_config = None ,
1499
1625
report = True ,
1500
1626
):
1627
+ """Extends analysis config with methods."""
1501
1628
# validate
1502
1629
params = [pre_training_methods , post_training_methods , explainability_config ]
1503
1630
if all ([1 if p is None else 0 for p in params ]):
1504
1631
raise AttributeError (
1505
1632
"analysis_config must have at least one working method: "
1506
- "One of the `pre_training_methods`, `post_training_methods`, `explainability_config`."
1633
+ "One of the "
1634
+ "`pre_training_methods`, `post_training_methods`, `explainability_config`."
1507
1635
)
1508
1636
1509
1637
# main logic
@@ -1529,6 +1657,7 @@ def _add_methods(
1529
1657
def _merge_explainability_configs (
1530
1658
cls , explainability_config : Union [ExplainabilityConfig , List [ExplainabilityConfig ]]
1531
1659
):
1660
+ """Merges explainability configs, when more than one."""
1532
1661
if isinstance (explainability_config , list ):
1533
1662
explainability_methods = {}
1534
1663
if len (explainability_config ) == 0 :
0 commit comments