|
| 1 | +from __future__ import absolute_import |
| 2 | + |
| 3 | +import unittest |
| 4 | +import os |
| 5 | +import uuid |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import pandas as pd |
| 9 | +from sagemaker_core.main.resources import TrainingJob |
| 10 | +from xgboost import XGBClassifier |
| 11 | + |
| 12 | +from sagemaker.serve import ModelBuilder, SchemaBuilder |
| 13 | +from sagemaker.serve.spec.inference_spec import InferenceSpec |
| 14 | +from sagemaker_core.main.shapes import OutputDataConfig, StoppingCondition, Channel, DataSource, \ |
| 15 | + S3DataSource, AlgorithmSpecification, ResourceConfig |
| 16 | +from sklearn.datasets import load_iris |
| 17 | +from sklearn.model_selection import train_test_split |
| 18 | + |
| 19 | +from sagemaker import Session, get_execution_role, image_uris |
| 20 | +from sagemaker.modules.train import ModelTrainer |
| 21 | + |
| 22 | +prefix = "DEMO-scikit-iris" |
| 23 | +TRAIN_DATA = "train.csv" |
| 24 | +TEST_DATA = "test.csv" |
| 25 | +DATA_DIRECTORY = "data" |
| 26 | + |
| 27 | + |
| 28 | +class XGBoostSpec(InferenceSpec): |
| 29 | + def load(self, model_dir: str): |
| 30 | + print(model_dir) |
| 31 | + model = XGBClassifier() |
| 32 | + model.load_model(model_dir + "/xgboost-model") |
| 33 | + return model |
| 34 | + |
| 35 | + def invoke(self, input_object: object, model: object): |
| 36 | + prediction_probabilities = model.predict_proba(input_object) |
| 37 | + predictions = np.argmax(prediction_probabilities, axis=1) |
| 38 | + return predictions |
| 39 | + |
| 40 | + |
| 41 | +class TestModelBuilderHandshake(unittest.TestCase): |
| 42 | + |
| 43 | + def setUp(self): |
| 44 | + self.sagemaker_session = Session() |
| 45 | + self.role = get_execution_role() |
| 46 | + self.region = self.sagemaker_session.boto_region_name |
| 47 | + self.bucket = self.sagemaker_session.default_bucket() |
| 48 | + self.setup_data() |
| 49 | + |
| 50 | + def setup_data(self): |
| 51 | + self.iris = load_iris() |
| 52 | + self.iris_df = pd.DataFrame(self.iris.data, columns=self.iris.feature_names) |
| 53 | + self.iris_df['target'] = self.iris.target |
| 54 | + |
| 55 | + os.makedirs('./data', exist_ok=True) |
| 56 | + |
| 57 | + iris_df = self.iris_df[ |
| 58 | + ['target'] + [col for col in self.iris_df.columns if col != 'target']] |
| 59 | + |
| 60 | + self.train_data, self.test_data = train_test_split(iris_df, test_size=0.2, random_state=42) |
| 61 | + |
| 62 | + self.train_data.to_csv('./data/train.csv', index=False, header=False) |
| 63 | + self.test_data.to_csv('./data/test.csv', index=False, header=False) |
| 64 | + |
| 65 | + # Remove the target column from the testing data. We will use this to call invoke_endpoint later |
| 66 | + self.test_data_no_target = self.test_data.drop('target', axis=1) |
| 67 | + |
| 68 | + self.train_input = self.sagemaker_session.upload_data( |
| 69 | + DATA_DIRECTORY, bucket=self.bucket, key_prefix="{}/{}".format(prefix, DATA_DIRECTORY) |
| 70 | + ) |
| 71 | + |
| 72 | + self.s3_input_path = "s3://{}/{}/data/{}".format(self.bucket, prefix, TRAIN_DATA) |
| 73 | + self.s3_output_path = "s3://{}/{}/output".format(self.bucket, prefix) |
| 74 | + self.s3_test_path = "s3://{}/{}/data/{}".format(self.bucket, prefix, TEST_DATA) |
| 75 | + self.xgboost_image = image_uris.retrieve(framework="xgboost", region="us-west-2", |
| 76 | + image_scope="training") |
| 77 | + data = { |
| 78 | + 'Name': ['Alice', 'Bob', 'Charlie'] |
| 79 | + } |
| 80 | + df = pd.DataFrame(data) |
| 81 | + self.schema_builder = SchemaBuilder(sample_input=df, sample_output=df) |
| 82 | + |
| 83 | + def test_model_trainer_handshake(self): |
| 84 | + model_trainer = ModelTrainer( |
| 85 | + base_job_name='test-mb-handshake', |
| 86 | + hyperparameters={ |
| 87 | + 'objective': 'multi:softmax', |
| 88 | + 'num_class': '3', |
| 89 | + 'num_round': '10', |
| 90 | + 'eval_metric': 'merror' |
| 91 | + }, |
| 92 | + training_image=self.xgboost_image, |
| 93 | + training_input_mode='File', |
| 94 | + role=self.role, |
| 95 | + output_data_config=OutputDataConfig( |
| 96 | + s3_output_path=self.s3_output_path |
| 97 | + ), |
| 98 | + stopping_condition=StoppingCondition( |
| 99 | + max_runtime_in_seconds=600 |
| 100 | + ) |
| 101 | + ) |
| 102 | + |
| 103 | + model_trainer.train( |
| 104 | + input_data_config=[ |
| 105 | + Channel( |
| 106 | + channel_name='train', |
| 107 | + content_type='csv', |
| 108 | + compression_type='None', |
| 109 | + record_wrapper_type='None', |
| 110 | + data_source=DataSource( |
| 111 | + s3_data_source=S3DataSource( |
| 112 | + s3_data_type='S3Prefix', |
| 113 | + s3_uri=self.s3_input_path, |
| 114 | + s3_data_distribution_type='FullyReplicated' |
| 115 | + ) |
| 116 | + ))]) |
| 117 | + |
| 118 | + model_builder = ModelBuilder( |
| 119 | + model=model_trainer, # ModelTrainer object passed onto ModelBuilder directly |
| 120 | + role_arn=self.role, |
| 121 | + image_uri=self.xgboost_image, |
| 122 | + inference_spec=XGBoostSpec(), |
| 123 | + schema_builder=self.schema_builder, |
| 124 | + instance_type="ml.c6i.xlarge" |
| 125 | + ) |
| 126 | + model = model_builder.build() |
| 127 | + assert (model.model_data == model_trainer |
| 128 | + ._latest_training_job.model_artifacts.s3_model_artifacts) |
| 129 | + |
| 130 | + def test_sagemaker_core_handshake(self): |
| 131 | + training_job_name = str(uuid.uuid4()) |
| 132 | + training_job = TrainingJob.create( |
| 133 | + training_job_name=training_job_name, |
| 134 | + hyper_parameters={ |
| 135 | + 'objective': 'multi:softmax', |
| 136 | + 'num_class': '3', |
| 137 | + 'num_round': '10', |
| 138 | + 'eval_metric': 'merror' |
| 139 | + }, |
| 140 | + algorithm_specification=AlgorithmSpecification( |
| 141 | + training_image=self.xgboost_image, |
| 142 | + training_input_mode='File' |
| 143 | + ), |
| 144 | + role_arn=self.role, |
| 145 | + input_data_config=[ |
| 146 | + Channel( |
| 147 | + channel_name='train', |
| 148 | + content_type='csv', |
| 149 | + compression_type='None', |
| 150 | + record_wrapper_type='None', |
| 151 | + data_source=DataSource( |
| 152 | + s3_data_source=S3DataSource( |
| 153 | + s3_data_type='S3Prefix', |
| 154 | + s3_uri=self.s3_input_path, |
| 155 | + s3_data_distribution_type='FullyReplicated' |
| 156 | + ) |
| 157 | + ) |
| 158 | + ) |
| 159 | + ], |
| 160 | + output_data_config=OutputDataConfig( |
| 161 | + s3_output_path=self.s3_output_path |
| 162 | + ), |
| 163 | + resource_config=ResourceConfig( |
| 164 | + instance_type='ml.m4.xlarge', |
| 165 | + instance_count=1, |
| 166 | + volume_size_in_gb=30 |
| 167 | + ), |
| 168 | + stopping_condition=StoppingCondition( |
| 169 | + max_runtime_in_seconds=600 |
| 170 | + ) |
| 171 | + ) |
| 172 | + training_job.wait() |
| 173 | + |
| 174 | + model_builder = ModelBuilder( |
| 175 | + model=training_job, |
| 176 | + role_arn=self.role, |
| 177 | + inference_spec=XGBoostSpec(), |
| 178 | + image_uri=self.xgboost_image, |
| 179 | + schema_builder=self.schema_builder, |
| 180 | + instance_type="ml.c6i.xlarge" |
| 181 | + ) |
| 182 | + model = model_builder.build() |
| 183 | + |
| 184 | + assert model.model_data == training_job.model_artifacts.s3_model_artifacts |
0 commit comments