Skip to content

Commit 650cfa8

Browse files
Update docs for Elastic Inference (#515)
1 parent cbf876c commit 650cfa8

File tree

4 files changed

+26
-1
lines changed

4 files changed

+26
-1
lines changed

README.rst

+5-1
Original file line numberDiff line numberDiff line change
@@ -356,7 +356,9 @@ MXNet SageMaker Estimators
356356
357357
By using MXNet SageMaker ``Estimators``, you can train and host MXNet models on Amazon SageMaker.
358358
359-
Supported versions of MXNet: ``1.2.1``, ``1.1.0``, ``1.0.0``, ``0.12.1``.
359+
Supported versions of MXNet: ``1.3.0``, ``1.2.1``, ``1.1.0``, ``1.0.0``, ``0.12.1``.
360+
361+
Supported versions of MXNet for Elastic Inference: ``1.3.0``
360362
361363
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
362364
@@ -372,6 +374,8 @@ By using TensorFlow SageMaker ``Estimators``, you can train and host TensorFlow
372374
373375
Supported versions of TensorFlow: ``1.4.1``, ``1.5.0``, ``1.6.0``, ``1.7.0``, ``1.8.0``, ``1.9.0``, ``1.10.0``, ``1.11.0``.
374376
377+
Supported versions of TensorFlow for Elastic Inference: ``1.11.0``.
378+
375379
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
376380
377381
For more information, see `TensorFlow SageMaker Estimators and Models`_.

src/sagemaker/mxnet/README.rst

+10
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,8 @@ With MXNet Estimators, you can train and host MXNet models on Amazon SageMaker.
66

77
Supported versions of MXNet: ``1.3.0``, ``1.2.1``, ``1.1.0``, ``1.0.0``, ``0.12.1``.
88

9+
Supported versions of MXNet for Elastic Inference: ``1.3.0``.
10+
911
Training with MXNet
1012
~~~~~~~~~~~~~~~~~~~
1113

@@ -480,6 +482,14 @@ After calling ``fit``, you can call ``deploy`` on an ``MXNet`` Estimator to crea
480482
481483
You use the SageMaker MXNet model server to host your MXNet model when you call ``deploy`` on an ``MXNet`` Estimator. The model server runs inside a SageMaker Endpoint, which your call to ``deploy`` creates. You can access the name of the Endpoint by the ``name`` property on the returned ``Predictor``.
482484

485+
MXNet on SageMaker has support for `Elastic Inference <https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html>`_, which allows for inference acceleration to a hosted endpoint for a fraction of the cost of using a full GPU instance. In order to attach an Elastic Inference accelerator to your endpoint provide the accelerator type to ``accelerator_type`` to your ``deploy`` call.
486+
487+
.. code:: python
488+
489+
predictor = mxnet_estimator.deploy(instance_type='ml.m4.xlarge',
490+
initial_instance_count=1,
491+
accelerator_type='ml.eia1.medium')
492+
483493
The SageMaker MXNet Model Server
484494
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
485495

src/sagemaker/tensorflow/README.rst

+2
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,8 @@ Documentation of the previous Legacy Mode versions: `1.4.1 <https://github.com/a
2020
| You can find the Legacy Mode README `here <https://github.com/aws/sagemaker-python-sdk/tree/v1.12.0/src/sagemaker/tensorflow#tensorflow-sagemaker-estimators-and-models>`_. |
2121
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2222

23+
Supported versions of TensorFlow for Elastic Inference: ``1.11.0``.
24+
2325
Training with TensorFlow
2426
~~~~~~~~~~~~~~~~~~~~~~~~
2527

src/sagemaker/tensorflow/deploying_tensorflow_serving.rst

+9
Original file line numberDiff line numberDiff line change
@@ -34,6 +34,15 @@ estimator object to create a SageMaker Endpoint:
3434
3535
The code block above deploys a SageMaker Endpoint with one instance of the type 'ml.c5.xlarge'.
3636

37+
TensorFlow serving on SageMaker has support for `Elastic Inference <https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html>`_, which allows for inference acceleration to a hosted endpoint for a fraction of the cost of using a full GPU instance. In order to attach an Elastic Inference accelerator to your endpoint provide the accelerator type to ``accelerator_type`` to your ``deploy`` call.
38+
39+
.. code:: python
40+
41+
predictor = estimator.deploy(initial_instance_count=1,
42+
instance_type='ml.c5.xlarge',
43+
accelerator_type='ml.eia1.medium'
44+
endpoint_type='tensorflow-serving-elastic-inference')
45+
3746
What happens when deploy is called
3847
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3948

0 commit comments

Comments
 (0)