@@ -150,6 +150,40 @@ def test_inference_pipeline_model_deploy(sagemaker_session, cpu_instance_type):
150
150
assert "Could not find model" in str (exception .value )
151
151
152
152
153
+ @pytest .mark .release
154
+ def test_inference_pipeline_model_register (sagemaker_session ):
155
+ sparkml_data_path = os .path .join (DATA_DIR , "sparkml_model" )
156
+ endpoint_name = unique_name_from_base ("test-inference-pipeline-deploy" )
157
+ sparkml_model_data = sagemaker_session .upload_data (
158
+ path = os .path .join (sparkml_data_path , "mleap_model.tar.gz" ),
159
+ key_prefix = "integ-test-data/sparkml/model" ,
160
+ )
161
+
162
+ sparkml_model = SparkMLModel (
163
+ model_data = sparkml_model_data ,
164
+ env = {"SAGEMAKER_SPARKML_SCHEMA" : SCHEMA },
165
+ sagemaker_session = sagemaker_session ,
166
+ )
167
+
168
+ model = PipelineModel (
169
+ models = [sparkml_model ],
170
+ role = "SageMakerRole" ,
171
+ sagemaker_session = sagemaker_session ,
172
+ name = endpoint_name ,
173
+ )
174
+ model_package_group_name = unique_name_from_base ("pipeline-model-package" )
175
+ model_package = model .register (model_package_group_name = model_package_group_name )
176
+ assert model_package .model_package_arn is not None
177
+
178
+ sagemaker_session .sagemaker_client .delete_model_package (
179
+ ModelPackageName = model_package .model_package_arn
180
+ )
181
+
182
+ sagemaker_session .sagemaker_client .delete_model_package_group (
183
+ ModelPackageGroupName = model_package_group_name
184
+ )
185
+
186
+
153
187
@pytest .mark .slow_test
154
188
@pytest .mark .flaky (reruns = 5 , reruns_delay = 2 )
155
189
def test_inference_pipeline_model_deploy_and_update_endpoint (
0 commit comments