Skip to content

Commit 4f507f7

Browse files
Merge 'upstream/master' into tf2.10.1-release
2 parents a4dd518 + 554952e commit 4f507f7

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

43 files changed

+635
-306
lines changed

CHANGELOG.md

Lines changed: 49 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,54 @@
11
# Changelog
22

3+
## v2.126.0 (2022-12-22)
4+
5+
### Features
6+
7+
* AutoGluon 0.6.1 image_uris
8+
9+
### Bug Fixes and Other Changes
10+
11+
* Fix broken link in doc
12+
* Do not specify S3 path for disabled profiler
13+
14+
### Documentation Changes
15+
16+
* fix the incorrect property reference
17+
18+
## v2.125.0 (2022-12-19)
19+
20+
### Features
21+
22+
* add RandomSeed to support reproducible HPO
23+
24+
### Bug Fixes and Other Changes
25+
26+
* Correct SageMaker Clarify API docstrings by changing JSONPath to JMESPath
27+
28+
## v2.124.0 (2022-12-16)
29+
30+
### Features
31+
32+
* Doc update for TableFormatEnum
33+
* Add p4de to smddp supported instance types
34+
* Add disable_profiler field in config and propagate changes
35+
* Added doc update for dataset builder
36+
37+
### Bug Fixes and Other Changes
38+
39+
* Use Async Inference Config when available for endpoint update
40+
41+
### Documentation Changes
42+
43+
* smdistributed libraries release notes
44+
45+
## v2.123.0 (2022-12-15)
46+
47+
### Features
48+
49+
* Add support for TF2.9.2 training images
50+
* Add SageMaker Experiment
51+
352
## v2.122.0 (2022-12-14)
453

554
### Features

VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
2.122.1.dev0
1+
2.126.1.dev0

doc/amazon_sagemaker_model_building_pipeline.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -453,7 +453,7 @@ Example:
453453
str_outputParam, int_outputParam, bool_outputParam, float_outputParam
454454
],
455455
)
456-
output_ref = step_lambda.OutputParameters["output1"]
456+
output_ref = step_lambda.properties.Outputs["output1"]
457457
458458
Where the lambda function with :code:`arn arn:aws:lambda:us-west-2:123456789012:function:sagemaker_test_lambda`
459459
should output like this:
@@ -479,7 +479,7 @@ Note that the output parameters can not be nested. Otherwise, the value will be
479479
}
480480
}
481481
482-
This will be resolved as :code:`{"output1": "{\"nested_output1\":\"my-output\"}"}` by which if you refer :code:`step_lambda.OutputParameters["output1"]["nested_output1"]` later, a non-retryable client error will be thrown.
482+
This will be resolved as :code:`{"output1": "{\"nested_output1\":\"my-output\"}"}` by which if you refer :code:`step_lambda.properties.Outputs["output1"]["nested_output1"]` later, a non-retryable client error will be thrown.
483483

484484
CallbackStep
485485
`````````````
@@ -503,7 +503,7 @@ Example:
503503
inputs={"arg1": "foo", "arg2": 5, "arg3": param},
504504
outputs=[outputParam],
505505
)
506-
output_ref = step_callback.OutputParameters["output1]
506+
output_ref = step_callback.properties.Outputs["output1]
507507
508508
The output parameters cannot be nested. If the values are nested, they will be treated as a single string value. For example, a nested output value of
509509
@@ -515,7 +515,7 @@ The output parameters cannot be nested. If the values are nested, they will be t
515515
}
516516
}
517517
518-
is resolved as :code:`{"output1": "{\"nested_output1\":\"my-output\"}"}`. If you try to refer to :code:`step_callback.OutputParameters["output1"]["nested_output1"]` this will throw a non-retryable client error.
518+
is resolved as :code:`{"output1": "{\"nested_output1\":\"my-output\"}"}`. If you try to refer to :code:`step_callback.properties.Outputs["output1"]["nested_output1"]` this will throw a non-retryable client error.
519519
520520
521521
QualityCheckStep

doc/api/prep_data/feature_store.rst

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -72,3 +72,15 @@ Inputs
7272
.. autoclass:: sagemaker.feature_store.inputs.FeatureValue
7373
:members:
7474
:show-inheritance:
75+
76+
.. autoclass:: sagemaker.feature_store.inputs.TableFormatEnum
77+
:members:
78+
:show-inheritance:
79+
80+
81+
Dataset Builder
82+
***************
83+
84+
.. autoclass:: sagemaker.feature_store.dataset_builder.DatasetBuilder
85+
:members:
86+
:show-inheritance:

doc/api/training/sdp_versions/latest.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,8 +26,8 @@ depending on the version of the library you use.
2626
<https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html#data-parallel-use-python-skd-api>`_
2727
for more information.
2828

29-
Version 1.4.0, 1.4.1, 1.5.0 (Latest)
30-
====================================
29+
Version 1.4.0, 1.4.1, 1.5.0, 1.6.0 (Latest)
30+
===========================================
3131

3232
.. toctree::
3333
:maxdepth: 1

doc/api/training/smd_data_parallel_release_notes/smd_data_parallel_change_log.rst

Lines changed: 43 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,51 @@ Release Notes
77
New features, bug fixes, and improvements are regularly made to the SageMaker
88
distributed data parallel library.
99

10-
SageMaker Distributed Data Parallel 1.5.0 Release Notes
10+
SageMaker Distributed Data Parallel 1.6.0 Release Notes
1111
=======================================================
1212

13+
*Date: Dec. 15. 2022*
14+
15+
**New Features**
16+
17+
* New optimized SMDDP AllGather collective to complement the sharded data parallelism technique
18+
in the SageMaker model parallelism library. For more information, see `Sharded data parallelism with SMDDP Collectives
19+
<https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-sharded-data-parallelism.html#model-parallel-extended-features-pytorch-sharded-data-parallelism-smddp-collectives>`_
20+
in the *Amazon SageMaker Developer Guide*.
21+
* Added support for Amazon EC2 ``ml.p4de.24xlarge`` instances. You can run data parallel training jobs
22+
on ``ml.p4de.24xlarge`` instances with the SageMaker data parallelism library’s AllReduce collective.
23+
24+
**Improvements**
25+
26+
* General performance improvements of the SMDDP AllReduce collective communication operation.
27+
28+
**Migration to AWS Deep Learning Containers**
29+
30+
This version passed benchmark testing and is migrated to the following AWS Deep Learning Containers (DLC):
31+
32+
- SageMaker training container for PyTorch v1.12.1
33+
34+
.. code::
35+
36+
763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:1.12.1-gpu-py38-cu113-ubuntu20.04-sagemaker
37+
38+
39+
Binary file of this version of the library for `custom container
40+
<https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html#data-parallel-bring-your-own-container>`_ users:
41+
42+
.. code::
43+
44+
https://smdataparallel.s3.amazonaws.com/binary/pytorch/1.12.1/cu113/2022-12-05/smdistributed_dataparallel-1.6.0-cp38-cp38-linux_x86_64.whl
45+
46+
47+
----
48+
49+
Release History
50+
===============
51+
52+
SageMaker Distributed Data Parallel 1.5.0 Release Notes
53+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54+
1355
*Date: Jul. 26. 2022*
1456

1557
**Currency Updates**
@@ -38,12 +80,6 @@ Binary file of this version of the library for `custom container
3880
3981
https://smdataparallel.s3.amazonaws.com/binary/pytorch/1.12.0/cu113/2022-07-01/smdistributed_dataparallel-1.5.0-cp38-cp38-linux_x86_64.whl
4082
41-
42-
----
43-
44-
Release History
45-
===============
46-
4783
SageMaker Distributed Data Parallel 1.4.1 Release Notes
4884
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4985

doc/api/training/smd_model_parallel_release_notes/smd_model_parallel_change_log.rst

Lines changed: 53 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -6,9 +6,60 @@ New features, bug fixes, and improvements are regularly made to the SageMaker
66
distributed model parallel library.
77

88

9-
SageMaker Distributed Model Parallel 1.11.0 Release Notes
9+
SageMaker Distributed Model Parallel 1.13.0 Release Notes
1010
=========================================================
1111

12+
*Date: Dec. 15. 2022*
13+
14+
**New Features**
15+
16+
* Sharded data parallelism now supports a new backend for collectives called *SMDDP Collectives*.
17+
For supported scenarios, SMDDP Collectives are on by default for the AllGather operation.
18+
For more information, see
19+
`Sharded data parallelism with SMDDP Collectives
20+
<https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-sharded-data-parallelism.html#model-parallel-extended-features-pytorch-sharded-data-parallelism-smddp-collectives>`_
21+
in the *Amazon SageMaker Developer Guide*.
22+
* Introduced FlashAttention for DistributedTransformer to improve memory usage and computational
23+
performance of models such as GPT2, GPTNeo, GPTJ, GPTNeoX, BERT, and RoBERTa.
24+
25+
**Bug Fixes**
26+
27+
* Fixed initialization of ``lm_head`` in DistributedTransformer to use a provided range
28+
for initialization, when weights are not tied with the embeddings.
29+
30+
**Improvements**
31+
32+
* When a module has no parameters, we have introduced an optimization to execute
33+
such a module on the same rank as its parent during pipeline parallelism.
34+
35+
**Migration to AWS Deep Learning Containers**
36+
37+
This version passed benchmark testing and is migrated to the following AWS Deep Learning Containers (DLC):
38+
39+
- SageMaker training container for PyTorch v1.12.1
40+
41+
.. code::
42+
43+
763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:1.12.1-gpu-py38-cu113-ubuntu20.04-sagemaker
44+
45+
46+
Binary file of this version of the library for `custom container
47+
<https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-sm-sdk.html#model-parallel-bring-your-own-container>`_ users:
48+
49+
- For PyTorch 1.12.0
50+
51+
.. code::
52+
53+
https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/pytorch-1.12.1/build-artifacts/2022-12-08-21-34/smdistributed_modelparallel-1.13.0-cp38-cp38-linux_x86_64.whl
54+
55+
----
56+
57+
Release History
58+
===============
59+
60+
SageMaker Distributed Model Parallel 1.11.0 Release Notes
61+
---------------------------------------------------------
62+
1263
*Date: August. 17. 2022*
1364

1465
**New Features**
@@ -41,12 +92,7 @@ Binary file of this version of the library for `custom container
4192

4293
.. code::
4394
44-
https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/pytorch-1.12.0/build-artifacts/2022-08-12-16-58/smdistributed_modelparallel-1.11.0-cp38-cp38-linux_x86_64.whl
45-
46-
----
47-
48-
Release History
49-
===============
95+
https://sagemaker-distribu
5096
5197
SageMaker Distributed Model Parallel 1.10.1 Release Notes
5298
---------------------------------------------------------

doc/api/training/smp_versions/latest.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,8 +10,8 @@ depending on which version of the library you need to use.
1010
To use the library, reference the
1111
**Common API** documentation alongside the framework specific API documentation.
1212

13-
Version 1.11.0 (Latest)
14-
===========================================
13+
Version 1.11.0, 1.13.0 (Latest)
14+
===============================
1515

1616
To use the library, reference the Common API documentation alongside the framework specific API documentation.
1717

doc/overview.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1601,7 +1601,7 @@ see the following documentation:
16011601
- `Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud <https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html>`__
16021602
- `Working with VPCs and Subnets <https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html>`__
16031603
1604-
You can also reference or reuse the example VPC created for integration tests: `tests/integ/vpc_test_utils.py <tests/integ/vpc_test_utils.py>`__
1604+
You can also reference or reuse the example VPC created for integration tests: `tests/integ/vpc_test_utils.py <../tests/integ/vpc_test_utils.py>`__
16051605
16061606
To train a model using your own VPC, set the optional parameters ``subnets`` and ``security_group_ids`` on an ``Estimator``:
16071607

src/sagemaker/clarify.py

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -330,11 +330,11 @@ def __init__(
330330
s3_analysis_config_output_path (str): S3 prefix to store the analysis config output.
331331
If this field is None, then the ``s3_output_path`` will be used
332332
to store the ``analysis_config`` output.
333-
label (str): Target attribute of the model required by bias metrics.
334-
Specified as column name or index for CSV dataset or as JSONPath for JSONLines.
333+
label (str): Target attribute of the model required by bias metrics. Specified as
334+
column name or index for CSV dataset or as JMESPath expression for JSONLines.
335335
*Required parameter* except for when the input dataset does not contain the label.
336-
features (List[str]): JSONPath for locating the feature columns for bias metrics if the
337-
dataset format is JSONLines.
336+
features (List[str]): JMESPath expression to locate the feature columns for
337+
bias metrics if the dataset format is JSONLines.
338338
dataset_type (str): Format of the dataset. Valid values are ``"text/csv"`` for CSV,
339339
``"application/jsonlines"`` for JSONLines, and
340340
``"application/x-parquet"`` for Parquet.
@@ -716,11 +716,11 @@ def __init__(
716716
``label_headers=['cat','dog','fish']`` and infer the predicted label to be ``'fish'``.
717717
718718
Args:
719-
label (str or int): Index or JSONPath location in the model output for the prediction.
720-
In case, this is a predicted label of the same type as the label in the dataset,
721-
no further arguments need to be specified.
722-
probability (str or int): Index or JSONPath location in the model output
723-
for the predicted score(s).
719+
label (str or int): Index or JMESPath expression to locate the prediction
720+
in the model output. In case, this is a predicted label of the same type
721+
as the label in the dataset, no further arguments need to be specified.
722+
probability (str or int): Index or JMESPath expression to locate the predicted score(s)
723+
in the model output.
724724
probability_threshold (float): An optional value for binary prediction tasks in which
725725
the model returns a probability, to indicate the threshold to convert the
726726
prediction to a boolean value. Default is ``0.5``.
@@ -1645,9 +1645,9 @@ def run_explainability(
16451645
You can request multiple methods at once by passing in a list of
16461646
`~sagemaker.clarify.ExplainabilityConfig`.
16471647
model_scores (int or str or :class:`~sagemaker.clarify.ModelPredictedLabelConfig`):
1648-
Index or JSONPath to locate the predicted scores in the model output. This is not
1649-
required if the model output is a single score. Alternatively, it can be an instance
1650-
of :class:`~sagemaker.clarify.SageMakerClarifyProcessor`
1648+
Index or JMESPath expression to locate the predicted scores in the model output.
1649+
This is not required if the model output is a single score. Alternatively,
1650+
it can be an instance of :class:`~sagemaker.clarify.SageMakerClarifyProcessor`
16511651
to provide more parameters like ``label_headers``.
16521652
wait (bool): Whether the call should wait until the job completes (default: True).
16531653
logs (bool): Whether to show the logs produced by the job.
@@ -1774,9 +1774,9 @@ def run_bias_and_explainability(
17741774
str or
17751775
:class:`~sagemaker.clarify.ModelPredictedLabelConfig`
17761776
):
1777-
Index or JSONPath to locate the predicted scores in the model output. This is not
1778-
required if the model output is a single score. Alternatively, it can be an instance
1779-
of :class:`~sagemaker.clarify.SageMakerClarifyProcessor`
1777+
Index or JMESPath expression to locate the predicted scores in the model output.
1778+
This is not required if the model output is a single score. Alternatively,
1779+
it can be an instance of :class:`~sagemaker.clarify.SageMakerClarifyProcessor`
17801780
to provide more parameters like ``label_headers``.
17811781
wait (bool): Whether the call should wait until the job completes (default: True).
17821782
logs (bool): Whether to show the logs produced by the job.

src/sagemaker/debugger/profiler_config.py

Lines changed: 9 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,7 @@ def __init__(
3232
s3_output_path: Optional[Union[str, PipelineVariable]] = None,
3333
system_monitor_interval_millis: Optional[Union[int, PipelineVariable]] = None,
3434
framework_profile_params: Optional[FrameworkProfile] = None,
35+
disable_profiler: Optional[Union[str, PipelineVariable]] = False,
3536
):
3637
"""Initialize a ``ProfilerConfig`` instance.
3738
@@ -78,6 +79,7 @@ class and SageMaker Framework estimators.
7879
self.s3_output_path = s3_output_path
7980
self.system_monitor_interval_millis = system_monitor_interval_millis
8081
self.framework_profile_params = framework_profile_params
82+
self.disable_profiler = disable_profiler
8183

8284
def _to_request_dict(self):
8385
"""Generate a request dictionary using the parameters provided when initializing the object.
@@ -88,9 +90,15 @@ def _to_request_dict(self):
8890
"""
8991
profiler_config_request = {}
9092

91-
if self.s3_output_path is not None:
93+
if (
94+
self.s3_output_path is not None
95+
and self.disable_profiler is not None
96+
and self.disable_profiler is False
97+
):
9298
profiler_config_request["S3OutputPath"] = self.s3_output_path
9399

100+
profiler_config_request["DisableProfiler"] = self.disable_profiler
101+
94102
if self.system_monitor_interval_millis is not None:
95103
profiler_config_request[
96104
"ProfilingIntervalInMilliseconds"

0 commit comments

Comments
 (0)