|
| 1 | ++-------------------------------------------------------------------------------------------------+ |
| 2 | +| **NOTE**: We are working on v2.0.0. See https://github.com/aws/sagemaker-python-sdk/issues/1459 | |
| 3 | +| for more info on our plans and to leave feedback! | |
| 4 | ++-------------------------------------------------------------------------------------------------+ |
| 5 | + |
1 | 6 | .. image:: https://github.com/aws/sagemaker-python-sdk/raw/master/branding/icon/sagemaker-banner.png
|
2 | 7 | :height: 100px
|
3 | 8 | :alt: SageMaker
|
@@ -29,36 +34,36 @@ You can also train and deploy models with **Amazon algorithms**,
|
29 | 34 | which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training.
|
30 | 35 | If you have **your own algorithms** built into SageMaker compatible Docker containers, you can train and host models using these as well.
|
31 | 36 |
|
32 |
| -For detailed API reference please go to: `Read the Docs <https://sagemaker.readthedocs.io>`_ |
| 37 | +For detailed documentation, including the API reference, see `Read the Docs <https://sagemaker.readthedocs.io>`_. |
33 | 38 |
|
34 | 39 | Table of Contents
|
35 | 40 | -----------------
|
36 | 41 |
|
37 |
| -1. `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk>`__ |
38 |
| -2. `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html>`__ |
39 |
| -3. `MXNet SageMaker Estimators <#mxnet-sagemaker-estimators>`__ |
40 |
| -4. `TensorFlow SageMaker Estimators <#tensorflow-sagemaker-estimators>`__ |
41 |
| -5. `Chainer SageMaker Estimators <#chainer-sagemaker-estimators>`__ |
42 |
| -6. `PyTorch SageMaker Estimators <#pytorch-sagemaker-estimators>`__ |
43 |
| -7. `Scikit-learn SageMaker Estimators <#scikit-learn-sagemaker-estimators>`__ |
44 |
| -8. `XGBoost SageMaker Estimators <#xgboost-sagemaker-estimators>`__ |
45 |
| -9. `SageMaker Reinforcement Learning Estimators <#sagemaker-reinforcement-learning-estimators>`__ |
46 |
| -10. `SageMaker SparkML Serving <#sagemaker-sparkml-serving>`__ |
47 |
| -11. `AWS SageMaker Estimators <#aws-sagemaker-estimators>`__ |
48 |
| -12. `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators>`__ |
49 |
| -13. `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages>`__ |
50 |
| -14. `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators>`__ |
51 |
| -15. `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning>`__ |
52 |
| -16. `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform>`__ |
53 |
| -17. `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc>`__ |
54 |
| -18. `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model>`__ |
55 |
| -19. `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines>`__ |
56 |
| -20. `Amazon SageMaker Operators for Kubernetes <#amazon-sagemaker-operators-for-kubernetes>`__ |
57 |
| -21. `Amazon SageMaker Operators in Apache Airflow <#sagemaker-workflow>`__ |
58 |
| -22. `SageMaker Autopilot <#sagemaker-autopilot>`__ |
59 |
| -23. `Model Monitoring <#amazon-sagemaker-model-monitoring>`__ |
60 |
| -24. `SageMaker Debugger <#amazon-sagemaker-debugger>`__ |
61 |
| -25. `SageMaker Processing <#amazon-sagemaker-processing>`__ |
| 42 | +#. `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk>`__ |
| 43 | +#. `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html>`__ |
| 44 | +#. `Using MXNet <https://sagemaker.readthedocs.io/en/stable/using_mxnet.html>`__ |
| 45 | +#. `Using TensorFlow <https://sagemaker.readthedocs.io/en/stable/using_tf.html>`__ |
| 46 | +#. `Using Chainer <https://sagemaker.readthedocs.io/en/stable/using_chainer.html>`__ |
| 47 | +#. `Using PyTorch <https://sagemaker.readthedocs.io/en/stable/using_pytorch.html>`__ |
| 48 | +#. `Using Scikit-learn <https://sagemaker.readthedocs.io/en/stable/using_sklearn.html>`__ |
| 49 | +#. `Using XGBoost <https://sagemaker.readthedocs.io/en/stable/using_xgboost.html>`__ |
| 50 | +#. `SageMaker Reinforcement Learning Estimators <https://sagemaker.readthedocs.io/en/stable/using_rl.html>`__ |
| 51 | +#. `SageMaker SparkML Serving <#sagemaker-sparkml-serving>`__ |
| 52 | +#. `Amazon SageMaker Built-in Algorithm Estimators <src/sagemaker/amazon/README.rst>`__ |
| 53 | +#. `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators>`__ |
| 54 | +#. `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages>`__ |
| 55 | +#. `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators>`__ |
| 56 | +#. `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning>`__ |
| 57 | +#. `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform>`__ |
| 58 | +#. `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc>`__ |
| 59 | +#. `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model>`__ |
| 60 | +#. `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines>`__ |
| 61 | +#. `Amazon SageMaker Operators for Kubernetes <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html>`__ |
| 62 | +#. `Amazon SageMaker Operators in Apache Airflow <https://sagemaker.readthedocs.io/en/stable/using_workflow.html>`__ |
| 63 | +#. `SageMaker Autopilot <src/sagemaker/automl/README.rst>`__ |
| 64 | +#. `Model Monitoring <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html>`__ |
| 65 | +#. `SageMaker Debugger <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html>`__ |
| 66 | +#. `SageMaker Processing <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html>`__ |
62 | 67 |
|
63 | 68 |
|
64 | 69 | Installing the SageMaker Python SDK
|
@@ -192,120 +197,6 @@ Preview the site with a Python web server:
|
192 | 197 |
|
193 | 198 | View the website by visiting http://localhost:8000
|
194 | 199 |
|
195 |
| - |
196 |
| -MXNet SageMaker Estimators |
197 |
| --------------------------- |
198 |
| - |
199 |
| -By using MXNet SageMaker Estimators, you can train and host MXNet models on Amazon SageMaker. |
200 |
| - |
201 |
| -Supported versions of MXNet: ``0.12.1``, ``1.0.0``, ``1.1.0``, ``1.2.1``, ``1.3.0``, ``1.4.0``, ``1.4.1``, ``1.6.0``. |
202 |
| - |
203 |
| -Supported versions of MXNet for Elastic Inference: ``1.3.0``, ``1.4.0``, ``1.4.1``. |
204 |
| - |
205 |
| -We recommend that you use the latest supported version, because that's where we focus most of our development efforts. |
206 |
| - |
207 |
| -For more information, see `Using MXNet with the SageMaker Python SDK`_. |
208 |
| - |
209 |
| -.. _Using MXNet with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_mxnet.html |
210 |
| - |
211 |
| - |
212 |
| -TensorFlow SageMaker Estimators |
213 |
| -------------------------------- |
214 |
| - |
215 |
| -By using TensorFlow SageMaker Estimators, you can train and host TensorFlow models on Amazon SageMaker. |
216 |
| - |
217 |
| -Supported versions of TensorFlow: ``1.4.1``, ``1.5.0``, ``1.6.0``, ``1.7.0``, ``1.8.0``, ``1.9.0``, ``1.10.0``, ``1.11.0``, ``1.12.0``, ``1.13.1``, ``1.14.0``, ``1.15.0``, ``1.15.2``, ``2.0.0``, ``2.0.1``, ``2.1.0``. |
218 |
| - |
219 |
| -Supported versions of TensorFlow for Elastic Inference: ``1.11.0``, ``1.12.0``, ``1.13.1``, ``1.14.0``, ``1.15.0``, ``2.0.0``. |
220 |
| - |
221 |
| -We recommend that you use the latest supported version, because that's where we focus most of our development efforts. |
222 |
| - |
223 |
| -For more information, see `Using TensorFlow with the SageMaker Python SDK`_. |
224 |
| - |
225 |
| -.. _Using TensorFlow with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_tf.html |
226 |
| - |
227 |
| - |
228 |
| -Chainer SageMaker Estimators |
229 |
| ----------------------------- |
230 |
| - |
231 |
| -By using Chainer SageMaker Estimators, you can train and host Chainer models on Amazon SageMaker. |
232 |
| - |
233 |
| -Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``. |
234 |
| - |
235 |
| -We recommend that you use the latest supported version, because that's where we focus most of our development efforts. |
236 |
| - |
237 |
| -For more information about Chainer, see https://github.com/chainer/chainer. |
238 |
| - |
239 |
| -For more information about Chainer SageMaker Estimators, see `Using Chainer with the SageMaker Python SDK`_. |
240 |
| - |
241 |
| -.. _Using Chainer with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_chainer.html |
242 |
| - |
243 |
| - |
244 |
| -PyTorch SageMaker Estimators |
245 |
| ----------------------------- |
246 |
| - |
247 |
| -With PyTorch SageMaker Estimators, you can train and host PyTorch models on Amazon SageMaker. |
248 |
| - |
249 |
| -Supported versions of PyTorch: ``0.4.0``, ``1.0.0``, ``1.1.0``, ``1.2.0``, ``1.3.1``, ``1.4.0``, ``1.5.0``. |
250 |
| - |
251 |
| -Supported versions of PyTorch for Elastic Inference: ``1.3.1``. |
252 |
| - |
253 |
| -We recommend that you use the latest supported version, because that's where we focus most of our development efforts. |
254 |
| - |
255 |
| -For more information about PyTorch, see https://github.com/pytorch/pytorch. |
256 |
| - |
257 |
| -For more information about PyTorch SageMaker Estimators, see `Using PyTorch with the SageMaker Python SDK`_. |
258 |
| - |
259 |
| -.. _Using PyTorch with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_pytorch.html |
260 |
| - |
261 |
| - |
262 |
| -Scikit-learn SageMaker Estimators |
263 |
| ---------------------------------- |
264 |
| - |
265 |
| -With Scikit-learn SageMaker Estimators, you can train and host Scikit-learn models on Amazon SageMaker. |
266 |
| - |
267 |
| -Supported versions of Scikit-learn: ``0.20.0``. |
268 |
| - |
269 |
| -We recommend that you use the latest supported version, because that's where we focus most of our development efforts. |
270 |
| - |
271 |
| -For more information about Scikit-learn, see https://scikit-learn.org/stable/ |
272 |
| - |
273 |
| -For more information about Scikit-learn SageMaker Estimators, see `Using Scikit-learn with the SageMaker Python SDK`_. |
274 |
| - |
275 |
| -.. _Using Scikit-learn with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_sklearn.html |
276 |
| - |
277 |
| -XGBoost SageMaker Estimators |
278 |
| ----------------------------- |
279 |
| - |
280 |
| -With XGBoost SageMaker Estimators, you can train and host XGBoost models on Amazon SageMaker. |
281 |
| - |
282 |
| -Supported versions of XGBoost: ``0.90-1``. |
283 |
| - |
284 |
| -We recommend that you use the latest supported version, because that's where we focus most of our development efforts. |
285 |
| - |
286 |
| -For more information about XGBoost, see https://xgboost.readthedocs.io/en/latest/ |
287 |
| - |
288 |
| -For more information about XGBoost SageMaker Estimators, see `Using XGBoost with the SageMaker Python SDK`_. |
289 |
| - |
290 |
| -.. _Using XGBoost with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_xgboost.html |
291 |
| - |
292 |
| - |
293 |
| -SageMaker Reinforcement Learning Estimators |
294 |
| -------------------------------------------- |
295 |
| - |
296 |
| -With Reinforcement Learning (RL) Estimators, you can use reinforcement learning to train models on Amazon SageMaker. |
297 |
| - |
298 |
| -Supported versions of Coach: ``0.10.1``, ``0.11.1`` with TensorFlow, ``0.11.0`` with TensorFlow or MXNet. |
299 |
| -For more information about Coach, see https://github.com/NervanaSystems/coach |
300 |
| - |
301 |
| -Supported versions of Ray: ``0.5.3``, ``0.6.5`` with TensorFlow. |
302 |
| -For more information about Ray, see https://github.com/ray-project/ray |
303 |
| - |
304 |
| -For more information about SageMaker RL Estimators, see `SageMaker Reinforcement Learning Estimators`_. |
305 |
| - |
306 |
| -.. _SageMaker Reinforcement Learning Estimators: src/sagemaker/rl/README.rst |
307 |
| - |
308 |
| - |
309 | 200 | SageMaker SparkML Serving
|
310 | 201 | -------------------------
|
311 | 202 |
|
@@ -338,74 +229,3 @@ For more information about the different ``content-type`` and ``Accept`` formats
|
338 | 229 | ``schema`` that SageMaker SparkML Serving recognizes, please see `SageMaker SparkML Serving Container`_.
|
339 | 230 |
|
340 | 231 | .. _SageMaker SparkML Serving Container: https://github.com/aws/sagemaker-sparkml-serving-container
|
341 |
| - |
342 |
| -AWS SageMaker Estimators |
343 |
| ------------------------- |
344 |
| -Amazon SageMaker provides several built-in machine learning algorithms that you can use to solve a variety of problems. |
345 |
| - |
346 |
| -The full list of algorithms is available at: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html |
347 |
| - |
348 |
| -The SageMaker Python SDK includes estimator wrappers for the AWS K-means, Principal Components Analysis (PCA), Linear Learner, Factorization Machines, |
349 |
| -Latent Dirichlet Allocation (LDA), Neural Topic Model (NTM), Random Cut Forest, k-nearest neighbors (k-NN), Object2Vec, and IP Insights algorithms. |
350 |
| - |
351 |
| -For more information, see `AWS SageMaker Estimators and Models`_. |
352 |
| - |
353 |
| -.. _AWS SageMaker Estimators and Models: src/sagemaker/amazon/README.rst |
354 |
| - |
355 |
| -Amazon SageMaker Operators for Kubernetes |
356 |
| ------------------------------------------ |
357 |
| - |
358 |
| -You can use Amazon SageMaker Operators for Kubernetes to optimize hyperparameters for a given model, run batch transform jobs over existing models, and set up inference endpoints. |
359 |
| - |
360 |
| -For more information, see `Amazon SageMaker Operators for Kubernetes`_. |
361 |
| - |
362 |
| -.. _Amazon SageMaker Operators for Kubernetes: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html |
363 |
| - |
364 |
| -Amazon SageMaker Operators in Apache Airflow |
365 |
| --------------------------------------------- |
366 |
| - |
367 |
| -You can use Apache Airflow to author, schedule and monitor SageMaker workflow. |
368 |
| - |
369 |
| -For more information, see `Amazon SageMaker Operators in Apache Airflow`_. |
370 |
| - |
371 |
| -.. _Amazon SageMaker Operators in Apache Airflow: https://sagemaker.readthedocs.io/en/stable/using_workflow.html |
372 |
| - |
373 |
| -SageMaker Autopilot |
374 |
| -------------------- |
375 |
| - |
376 |
| -Amazon SageMaker Autopilot is an automated machine learning solution (commonly referred to as "AutoML") for tabular |
377 |
| -datasets. It automatically trains and tunes the best machine learning models for classification or regression based |
378 |
| -on your data, and hosts a series of models on an Inference Pipeline. |
379 |
| - |
380 |
| -For more information about SageMaker Autopilot, see `SageMaker Autopilot`_. |
381 |
| - |
382 |
| -.. _SageMaker Autopilot: src/sagemaker/automl/README.rst |
383 |
| - |
384 |
| -Amazon SageMaker Model Monitoring |
385 |
| ---------------------------------- |
386 |
| - |
387 |
| -You can use Amazon SageMaker Model Monitoring to automatically detect concept drift by monitoring your machine learning models. |
388 |
| - |
389 |
| -For more information, see `Amazon SageMaker Model Monitoring`_. |
390 |
| - |
391 |
| -.. _Amazon SageMaker Model Monitoring: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html |
392 |
| - |
393 |
| -Amazon SageMaker Debugger |
394 |
| -------------------------- |
395 |
| - |
396 |
| -You can use Amazon SageMaker Debugger to automatically detect anomalies while training your machine learning models. |
397 |
| - |
398 |
| -For more information, see `Amazon SageMaker Debugger`_. |
399 |
| - |
400 |
| -.. _Amazon SageMaker Debugger: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html |
401 |
| - |
402 |
| - |
403 |
| -Amazon SageMaker Processing |
404 |
| ---------------------------------- |
405 |
| - |
406 |
| -You can use Amazon SageMaker Processing to perform data processing tasks such as data pre- and post-processing, feature engineering, data validation, and model evaluation |
407 |
| - |
408 |
| - |
409 |
| -For more information, see `Amazon SageMaker Processing`_. |
410 |
| - |
411 |
| -.. _Amazon SageMaker Processing: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html |
0 commit comments