|
18 | 18 | import time
|
19 | 19 | import uuid
|
20 | 20 |
|
21 |
| -import boto3 |
22 | 21 | import pytest
|
23 | 22 |
|
24 |
| -from botocore.config import Config |
25 | 23 | from botocore.exceptions import WaiterError
|
26 | 24 | from sagemaker.debugger import (
|
27 | 25 | DebuggerHookConfig,
|
|
32 | 30 | from sagemaker.model import Model
|
33 | 31 | from sagemaker.processing import ProcessingInput, ProcessingOutput
|
34 | 32 | from sagemaker.pytorch.estimator import PyTorch
|
35 |
| -from sagemaker.session import get_execution_role, Session |
| 33 | +from sagemaker.session import get_execution_role |
36 | 34 | from sagemaker.sklearn.estimator import SKLearn
|
37 | 35 | from sagemaker.sklearn.processing import SKLearnProcessor
|
38 | 36 | from sagemaker.workflow.conditions import ConditionGreaterThanOrEqualTo
|
@@ -74,21 +72,6 @@ def role(sagemaker_session):
|
74 | 72 | return get_execution_role(sagemaker_session)
|
75 | 73 |
|
76 | 74 |
|
77 |
| -@pytest.fixture(scope="module") |
78 |
| -def workflow_session(region_name): |
79 |
| - boto_session = boto3.Session(region_name=region_name) |
80 |
| - |
81 |
| - sagemaker_client_config = dict() |
82 |
| - sagemaker_client_config.setdefault("config", Config(retries=dict(max_attempts=2))) |
83 |
| - sagemaker_client = boto_session.client("sagemaker", **sagemaker_client_config) |
84 |
| - |
85 |
| - return Session( |
86 |
| - boto_session=boto_session, |
87 |
| - sagemaker_client=sagemaker_client, |
88 |
| - sagemaker_runtime_client=None, |
89 |
| - ) |
90 |
| - |
91 |
| - |
92 | 75 | @pytest.fixture(scope="module")
|
93 | 76 | def script_dir():
|
94 | 77 | return os.path.join(DATA_DIR, "sklearn_processing")
|
@@ -119,7 +102,6 @@ def athena_dataset_definition(sagemaker_session):
|
119 | 102 |
|
120 | 103 | def test_three_step_definition(
|
121 | 104 | sagemaker_session,
|
122 |
| - workflow_session, |
123 | 105 | region_name,
|
124 | 106 | role,
|
125 | 107 | script_dir,
|
@@ -205,7 +187,7 @@ def test_three_step_definition(
|
205 | 187 | name=pipeline_name,
|
206 | 188 | parameters=[instance_type, instance_count, output_prefix],
|
207 | 189 | steps=[step_process, step_train, step_model],
|
208 |
| - sagemaker_session=workflow_session, |
| 190 | + sagemaker_session=sagemaker_session, |
209 | 191 | )
|
210 | 192 |
|
211 | 193 | definition = json.loads(pipeline.definition())
|
@@ -277,7 +259,6 @@ def test_three_step_definition(
|
277 | 259 |
|
278 | 260 | def test_one_step_sklearn_processing_pipeline(
|
279 | 261 | sagemaker_session,
|
280 |
| - workflow_session, |
281 | 262 | role,
|
282 | 263 | sklearn_latest_version,
|
283 | 264 | cpu_instance_type,
|
@@ -313,7 +294,7 @@ def test_one_step_sklearn_processing_pipeline(
|
313 | 294 | name=pipeline_name,
|
314 | 295 | parameters=[instance_count],
|
315 | 296 | steps=[step_sklearn],
|
316 |
| - sagemaker_session=workflow_session, |
| 297 | + sagemaker_session=sagemaker_session, |
317 | 298 | )
|
318 | 299 |
|
319 | 300 | try:
|
@@ -363,7 +344,6 @@ def test_one_step_sklearn_processing_pipeline(
|
363 | 344 |
|
364 | 345 | def test_conditional_pytorch_training_model_registration(
|
365 | 346 | sagemaker_session,
|
366 |
| - workflow_session, |
367 | 347 | role,
|
368 | 348 | cpu_instance_type,
|
369 | 349 | pipeline_name,
|
@@ -433,7 +413,7 @@ def test_conditional_pytorch_training_model_registration(
|
433 | 413 | name=pipeline_name,
|
434 | 414 | parameters=[good_enough_input, instance_count, instance_type],
|
435 | 415 | steps=[step_cond],
|
436 |
| - sagemaker_session=workflow_session, |
| 416 | + sagemaker_session=sagemaker_session, |
437 | 417 | )
|
438 | 418 |
|
439 | 419 | try:
|
|
0 commit comments