|
| 1 | +# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"). You |
| 4 | +# may not use this file except in compliance with the License. A copy of |
| 5 | +# the License is located at |
| 6 | +# |
| 7 | +# http://aws.amazon.com/apache2.0/ |
| 8 | +# |
| 9 | +# or in the "license" file accompanying this file. This file is |
| 10 | +# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF |
| 11 | +# ANY KIND, either express or implied. See the License for the specific |
| 12 | +# language governing permissions and limitations under the License. |
| 13 | +from __future__ import absolute_import |
| 14 | + |
| 15 | +import sys |
| 16 | + |
| 17 | +import pasta |
| 18 | +import pytest |
| 19 | + |
| 20 | +from sagemaker.cli.compatibility.v2.modifiers import framework_version |
| 21 | + |
| 22 | + |
| 23 | +@pytest.fixture(autouse=True) |
| 24 | +def skip_if_py2(): |
| 25 | + # Remove once https://github.com/aws/sagemaker-python-sdk/issues/1461 is addressed. |
| 26 | + if sys.version_info.major < 3: |
| 27 | + pytest.skip("v2 migration script doesn't support Python 2.") |
| 28 | + |
| 29 | + |
| 30 | +def test_node_should_be_modified_fw_constructor_no_fw_version(): |
| 31 | + fw_constructors = ( |
| 32 | + "TensorFlow()", |
| 33 | + "sagemaker.tensorflow.TensorFlow()", |
| 34 | + "TensorFlowModel()", |
| 35 | + "sagemaker.tensorflow.TensorFlowModel()", |
| 36 | + "MXNet()", |
| 37 | + "sagemaker.mxnet.MXNet()", |
| 38 | + "MXNetModel()", |
| 39 | + "sagemaker.mxnet.MXNetModel()", |
| 40 | + "Chainer()", |
| 41 | + "sagemaker.chainer.Chainer()", |
| 42 | + "ChainerModel()", |
| 43 | + "sagemaker.chainer.ChainerModel()", |
| 44 | + "PyTorch()", |
| 45 | + "sagemaker.pytorch.PyTorch()", |
| 46 | + "PyTorchModel()", |
| 47 | + "sagemaker.pytorch.PyTorchModel()", |
| 48 | + "SKLearn()", |
| 49 | + "sagemaker.sklearn.SKLearn()", |
| 50 | + "SKLearnModel()", |
| 51 | + "sagemaker.sklearn.SKLearnModel()", |
| 52 | + ) |
| 53 | + |
| 54 | + modifier = framework_version.FrameworkVersionEnforcer() |
| 55 | + |
| 56 | + for constructor in fw_constructors: |
| 57 | + node = _ast_call(constructor) |
| 58 | + assert modifier.node_should_be_modified(node) is True |
| 59 | + |
| 60 | + |
| 61 | +def test_node_should_be_modified_fw_constructor_with_fw_version(): |
| 62 | + fw_constructors = ( |
| 63 | + "TensorFlow(framework_version='2.2')", |
| 64 | + "sagemaker.tensorflow.TensorFlow(framework_version='2.2')", |
| 65 | + "TensorFlowModel(framework_version='1.10')", |
| 66 | + "sagemaker.tensorflow.TensorFlowModel(framework_version='1.10')", |
| 67 | + "MXNet(framework_version='1.6')", |
| 68 | + "sagemaker.mxnet.MXNet(framework_version='1.6')", |
| 69 | + "MXNetModel(framework_version='1.6')", |
| 70 | + "sagemaker.mxnet.MXNetModel(framework_version='1.6')", |
| 71 | + "PyTorch(framework_version='1.4')", |
| 72 | + "sagemaker.pytorch.PyTorch(framework_version='1.4')", |
| 73 | + "PyTorchModel(framework_version='1.4')", |
| 74 | + "sagemaker.pytorch.PyTorchModel(framework_version='1.4')", |
| 75 | + "Chainer(framework_version='5.0')", |
| 76 | + "sagemaker.chainer.Chainer(framework_version='5.0')", |
| 77 | + "ChainerModel(framework_version='5.0')", |
| 78 | + "sagemaker.chainer.ChainerModel(framework_version='5.0')", |
| 79 | + "SKLearn(framework_version='0.20.0')", |
| 80 | + "sagemaker.sklearn.SKLearn(framework_version='0.20.0')", |
| 81 | + "SKLearnModel(framework_version='0.20.0')", |
| 82 | + "sagemaker.sklearn.SKLearnModel(framework_version='0.20.0')", |
| 83 | + ) |
| 84 | + |
| 85 | + modifier = framework_version.FrameworkVersionEnforcer() |
| 86 | + |
| 87 | + for constructor in fw_constructors: |
| 88 | + node = _ast_call(constructor) |
| 89 | + assert modifier.node_should_be_modified(node) is False |
| 90 | + |
| 91 | + |
| 92 | +def test_node_should_be_modified_random_function_call(): |
| 93 | + node = _ast_call("sagemaker.session.Session()") |
| 94 | + modifier = framework_version.FrameworkVersionEnforcer() |
| 95 | + assert modifier.node_should_be_modified(node) is False |
| 96 | + |
| 97 | + |
| 98 | +def test_modify_node_tf(): |
| 99 | + classes = ( |
| 100 | + "TensorFlow" "sagemaker.tensorflow.TensorFlow", |
| 101 | + "TensorFlowModel", |
| 102 | + "sagemaker.tensorflow.TensorFlowModel", |
| 103 | + ) |
| 104 | + _test_modify_node(classes, "1.11.0") |
| 105 | + |
| 106 | + |
| 107 | +def test_modify_node_mx(): |
| 108 | + classes = ("MXNet", "sagemaker.mxnet.MXNet", "MXNetModel", "sagemaker.mxnet.MXNetModel") |
| 109 | + _test_modify_node(classes, "1.2.0") |
| 110 | + |
| 111 | + |
| 112 | +def test_modify_node_chainer(): |
| 113 | + classes = ( |
| 114 | + "Chainer", |
| 115 | + "sagemaker.chainer.Chainer", |
| 116 | + "ChainerModel", |
| 117 | + "sagemaker.chainer.ChainerModel", |
| 118 | + ) |
| 119 | + _test_modify_node(classes, "4.1.0") |
| 120 | + |
| 121 | + |
| 122 | +def test_modify_node_pt(): |
| 123 | + classes = ( |
| 124 | + "PyTorch", |
| 125 | + "sagemaker.pytorch.PyTorch", |
| 126 | + "PyTorchModel", |
| 127 | + "sagemaker.pytorch.PyTorchModel", |
| 128 | + ) |
| 129 | + _test_modify_node(classes, "0.4.0") |
| 130 | + |
| 131 | + |
| 132 | +def test_modify_node_sklearn(): |
| 133 | + classes = ( |
| 134 | + "SKLearn", |
| 135 | + "sagemaker.sklearn.SKLearn", |
| 136 | + "SKLearnModel", |
| 137 | + "sagemaker.sklearn.SKLearnModel", |
| 138 | + ) |
| 139 | + _test_modify_node(classes, "0.20.0") |
| 140 | + |
| 141 | + |
| 142 | +def _ast_call(code): |
| 143 | + return pasta.parse(code).body[0].value |
| 144 | + |
| 145 | + |
| 146 | +def _test_modify_node(classes, default_version): |
| 147 | + modifier = framework_version.FrameworkVersionEnforcer() |
| 148 | + for cls in classes: |
| 149 | + node = _ast_call("{}()".format(cls)) |
| 150 | + modifier.modify_node(node) |
| 151 | + |
| 152 | + expected_result = "{}(framework_version='{}')".format(cls, default_version) |
| 153 | + assert expected_result == pasta.dump(node) |
0 commit comments