Skip to content

Commit 1e36ec1

Browse files
authored
Merge branch 'master' into training-step-anno-fix
2 parents 8ae60a1 + 3309f17 commit 1e36ec1

File tree

2 files changed

+10
-0
lines changed

2 files changed

+10
-0
lines changed

src/sagemaker/inputs.py

+2
Original file line numberDiff line numberDiff line change
@@ -70,6 +70,8 @@ def __init__(
7070
a local directory.
7171
* 'Pipe' - Amazon SageMaker streams data directly from S3 to the container via
7272
a Unix-named pipe.
73+
* 'FastFile' - Amazon SageMaker streams data from S3 on demand instead of
74+
downloading the entire dataset before training begins.
7375
7476
attribute_names (list[str]): A list of one or more attribute names to use that are
7577
found in a specified AugmentedManifestFile.

src/sagemaker/session.py

+8
Original file line numberDiff line numberDiff line change
@@ -467,6 +467,8 @@ def train( # noqa: C901
467467
a directory in the Docker container.
468468
* 'Pipe' - Amazon SageMaker streams data directly from S3 to the container via a
469469
Unix-named pipe.
470+
* 'FastFile' - Amazon SageMaker streams data from S3 on demand instead of
471+
downloading the entire dataset before training begins.
470472
input_config (list): A list of Channel objects. Each channel is a named input source.
471473
Please refer to the format details described:
472474
https://botocore.readthedocs.io/en/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job
@@ -609,6 +611,8 @@ def _get_train_request( # noqa: C901
609611
a directory in the Docker container.
610612
* 'Pipe' - Amazon SageMaker streams data directly from S3 to the container via a
611613
Unix-named pipe.
614+
* 'FastFile' - Amazon SageMaker streams data from S3 on demand instead of
615+
downloading the entire dataset before training begins.
612616
input_config (list): A list of Channel objects. Each channel is a named input source.
613617
Please refer to the format details described:
614618
https://botocore.readthedocs.io/en/latest/reference/services/sagemaker.html#SageMaker.Client.create_training_job
@@ -1897,6 +1901,8 @@ def tune( # noqa: C901
18971901
a directory in the Docker container.
18981902
* 'Pipe' - Amazon SageMaker streams data directly from S3 to the container via a
18991903
Unix-named pipe.
1904+
* 'FastFile' - Amazon SageMaker streams data from S3 on demand instead of
1905+
downloading the entire dataset before training begins.
19001906
metric_definitions (list[dict]): A list of dictionaries that defines the metric(s)
19011907
used to evaluate the training jobs. Each dictionary contains two keys: 'Name' for
19021908
the name of the metric, and 'Regex' for the regular expression used to extract the
@@ -2180,6 +2186,8 @@ def _map_training_config(
21802186
a directory in the Docker container.
21812187
* 'Pipe' - Amazon SageMaker streams data directly from S3 to the container via a
21822188
Unix-named pipe.
2189+
* 'FastFile' - Amazon SageMaker streams data from S3 on demand instead of
2190+
downloading the entire dataset before training begins.
21832191
role (str): An AWS IAM role (either name or full ARN). The Amazon SageMaker training
21842192
jobs and APIs that create Amazon SageMaker endpoints use this role to access
21852193
training data and model artifacts. You must grant sufficient permissions to

0 commit comments

Comments
 (0)