@@ -573,15 +573,49 @@ Here is an example:
573
573
# When you are done using your endpoint
574
574
model.sagemaker_session.delete_endpoint(' my-endpoint' )
575
575
576
- ********************************************
577
- Use Prebuilt Models with SageMaker JumpStart
578
- ********************************************
576
+ *********************************************************
577
+ Use SageMaker JumpStart Algorithms with Pretrained Models
578
+ *********************************************************
579
+
580
+ JumpStart for the SageMaker Python SDK uses model ids and model versions to access the necessary
581
+ utilities. This table serves to provide the core material plus some extra information that can be useful
582
+ in selecting the correct model id and corresponding parameters.
579
583
580
584
.. toctree ::
581
585
:maxdepth: 2
582
586
583
587
doc_utils/jumpstart
584
588
589
+ Example notebooks
590
+ =================
591
+
592
+ JumpStart supports 15 different machine learning problem types. Below is a list of all the supported
593
+ problem types with a link to a Jupyter notebook that provides example usage.
594
+
595
+ Vision
596
+ - `Image Classification <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_classification/Amazon_JumpStart_Image_Classification.ipynb >`__
597
+ - `Object Detection <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_object_detection/Amazon_JumpStart_Object_Detection.ipynb >`__
598
+ - `Semantic Segmentation <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_semantic_segmentation/Amazon_JumpStart_Semantic_Segmentation.ipynb >`__
599
+ - `Instance Segmentation <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_instance_segmentation/Amazon_JumpStart_Instance_Segmentation.ipynb >`__
600
+ - `Image Embedding <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_image_embedding/Amazon_JumpStart_Image_Embedding.ipynb >`__
601
+
602
+ Text
603
+ - `Text Classification <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_classification/Amazon_JumpStart_Text_Classification.ipynb >`__
604
+ - `Sentence Pair Classification <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_sentence_pair_classification/Amazon_JumpStart_Sentence_Pair_Classification.ipynb >`__
605
+ - `Question Answering <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_question_answering/Amazon_JumpStart_Question_Answering.ipynb >`__
606
+ - `Named Entity Recognition <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_named_entity_recognition/Amazon_JumpStart_Named_Entity_Recognition.ipynb >`__
607
+ - `Text Summarization <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_summarization/Amazon_JumpStart_Text_Summarization.ipynb >`__
608
+ - `Text Generation <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_generation/Amazon_JumpStart_Text_Generation.ipynb >`__
609
+ - `Machine Translation <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_machine_translation/Amazon_JumpStart_Machine_Translation.ipynb >`__
610
+ - `Text Embedding <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_text_embedding/Amazon_JumpStart_Text_Embedding.ipynb >`__
611
+
612
+ Tabular
613
+ - `Tabular Classification (LightGBM & Catboost) <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_tabular_classification/Amazon_JumpStart_Tabular_Classification_LightGBM_CatBoost.ipynb >`__
614
+ - `Tabular Classification (XGBoost & Linear Learner) <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_tabular_classification/Amazon_JumpStart_Tabular_Classification_XGBoost_LinearLearner.ipynb >`__
615
+ - `Tabular Regression (LightGBM & Catboost) <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_tabular_regression/Amazon_JumpStart_Tabular_Regression_LightGBM_CatBoost.ipynb >`__
616
+ - `Tabular Regression (XGBoost & Linear Learner) <https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart_tabular_regression/Amazon_JumpStart_Tabular_Regression_XGBoost_LinearLearner.ipynb >`__
617
+
618
+
585
619
`Amazon SageMaker JumpStart <https://aws.amazon.com/sagemaker/getting-started/ >`__ is a
586
620
SageMaker feature that helps users bring machine learning (ML)
587
621
applications to market using prebuilt solutions for common use cases,
0 commit comments