Skip to content

Commit 15a1b8d

Browse files
committed
Merge branch 'master' into feature-3563-add-lambda-func-parameters
# Conflicts: # src/sagemaker/lambda_helper.py
2 parents 6f13f15 + cc6a358 commit 15a1b8d

File tree

207 files changed

+6334
-1630
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

207 files changed

+6334
-1630
lines changed

CHANGELOG.md

Lines changed: 118 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,123 @@
11
# Changelog
22

3+
## v2.135.0 (2023-02-23)
4+
5+
### Features
6+
7+
* Add DLC accounts for MEL Region
8+
* allow use of short lived creds for local container
9+
10+
### Bug Fixes and Other Changes
11+
12+
* update lambda function when function arn is provided
13+
14+
## v2.134.1 (2023-02-22)
15+
16+
### Bug Fixes and Other Changes
17+
18+
* local mode deletion of temp files on job end
19+
* Cron expression resetting on update monitor
20+
* added support to update arguments in create_monitoring_schedule
21+
22+
## v2.134.0 (2023-02-22)
23+
24+
### Features
25+
26+
* Add python 3.9 and spark 3.2 support for spark processor
27+
* Adding support for Multi Worker Mirrored Strategy in TF estimator
28+
29+
### Bug Fixes and Other Changes
30+
31+
* tag permission issue - remove describe before create
32+
33+
## v2.133.0 (2023-02-18)
34+
35+
### Features
36+
37+
* feature store with_feature_group functionality changes
38+
* Adding support for SageMaker Training Compiler PyTorch 1.13
39+
* support of the intelligent stopping in the tuner
40+
* AutoGluon 0.6.2 image_uris update
41+
* Support for flexible instance types in the HPO
42+
* Add business details and hyper parameters fields and update test_model_card.py
43+
44+
### Bug Fixes and Other Changes
45+
46+
* disable the tuner test
47+
* Skip test_run_from_transform_job integ test to unblock python-sdk code pipeline
48+
* Revert "feature: feature store with_feature_group functionality changes"
49+
* advanced inference recommendation jobs parameters check
50+
* make model_config optional when predicted labels are provided for bias detection
51+
52+
## v2.132.0 (2023-02-07)
53+
54+
### Features
55+
56+
* support cluster lifecycle management for Sagemaker EMR step
57+
* Inference recommendation id deployment support
58+
59+
## v2.131.1 (2023-02-03)
60+
61+
### Bug Fixes and Other Changes
62+
63+
* test dub gpu integs with p3
64+
* fix(experiments/run.py): Stop duplication of RUN_TC_TAG on Consecutive Experiment Runs
65+
* Enable load_run without name args in Transform env
66+
* Remove confusing log line emitted during feature group ingestion
67+
* Enable Experiment integ test on beta clients
68+
* Make test_processor_with_role_as_pipeline_parameter more concrete
69+
70+
### Documentation Changes
71+
72+
* add security note for the estimator hyperparameter arg
73+
* SageMaker distributed - model parallism library release note
74+
* Add a deprecation note for DetailedProfileConfig
75+
76+
## v2.131.0 (2023-01-31)
77+
78+
### Features
79+
80+
* Display file diff on black-check
81+
* Support for environment variables in the HPO
82+
* Support role as PipelineParameter in Processor class
83+
* Add TrainingImageConfig support for SageMaker training jobs
84+
85+
### Bug Fixes and Other Changes
86+
87+
* use FeatureGroup's Session in nonconcurrency ingestion
88+
* Update feature_group.py ingest() description
89+
* Do not use print function. User logger instead
90+
* Add batch_get_record and search API for FeatureStore
91+
* hashing problem for framework processors with identical source dirs
92+
93+
## v2.130.0 (2023-01-26)
94+
95+
### Features
96+
97+
* Add PyTorch 1.13.1 to SDK
98+
* Adding image_uri config for DJL containers
99+
* Support specifying env-vars when creating model from model package
100+
* local download dir for Model and Estimator classes
101+
102+
### Bug Fixes and Other Changes
103+
104+
* increase creation time slack minutes
105+
* Enable load_run auto pass in experiment config
106+
* Add us-isob-east-1 accounts and configs
107+
* Clean up Pipeline unit tests
108+
109+
## v2.129.0 (2023-01-19)
110+
111+
### Features
112+
113+
* add p2 deprecation for PT>=1.13
114+
* TF2.11 Update to PySDK
115+
116+
### Bug Fixes and Other Changes
117+
118+
* Improve Pipeline integ tests and fix resource leak
119+
* Update TF version to 2.8.4
120+
3121
## v2.128.0 (2023-01-10)
4122

5123
### Features

VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
2.128.1.dev0
1+
2.135.1.dev0

doc/api/governance/model_card.rst

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -41,3 +41,9 @@ see `Amazon SageMaker Model Cards <https://docs.aws.amazon.com/sagemaker/latest/
4141

4242
.. autoclass:: TrainingJobDetails
4343
:show-inheritance:
44+
45+
.. autoclass:: BusinessDetails
46+
:show-inheritance:
47+
48+
.. autoclass:: HyperParameter
49+
:show-inheritance:

doc/api/training/sdp_versions/latest.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,8 +26,8 @@ depending on the version of the library you use.
2626
<https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html#data-parallel-use-python-skd-api>`_
2727
for more information.
2828

29-
Version 1.4.0, 1.4.1, 1.5.0, 1.6.0 (Latest)
30-
===========================================
29+
For versions between 1.4.0 and 1.7.0 (Latest)
30+
=============================================
3131

3232
.. toctree::
3333
:maxdepth: 1

doc/api/training/smd_data_parallel_release_notes/smd_data_parallel_change_log.rst

Lines changed: 32 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,40 @@ Release Notes
77
New features, bug fixes, and improvements are regularly made to the SageMaker
88
distributed data parallel library.
99

10-
SageMaker Distributed Data Parallel 1.6.0 Release Notes
10+
SageMaker Distributed Data Parallel 1.7.0 Release Notes
1111
=======================================================
1212

13+
*Date: Feb. 10. 2023*
14+
15+
**Currency Updates**
16+
17+
* Added support for PyTorch 1.13.1.
18+
19+
**Migration to AWS Deep Learning Containers**
20+
21+
This version passed benchmark testing and is migrated to the following AWS Deep Learning Containers (DLC):
22+
23+
- PyTorch 1.13.1 DLC
24+
25+
.. code::
26+
27+
763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-training:1.13.1-gpu-py39-cu117-ubuntu20.04-sagemaker
28+
29+
Binary file of this version of the library for custom container users:
30+
31+
.. code::
32+
33+
https://smdataparallel.s3.amazonaws.com/binary/pytorch/1.13.1/cu117/2023-01-09/smdistributed_dataparallel-1.7.0-cp39-cp39-linux_x86_64.whl
34+
35+
36+
----
37+
38+
Release History
39+
===============
40+
41+
SageMaker Distributed Data Parallel 1.6.0 Release Notes
42+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
43+
1344
*Date: Dec. 15. 2022*
1445

1546
**New Features**
@@ -44,11 +75,6 @@ Binary file of this version of the library for `custom container
4475
https://smdataparallel.s3.amazonaws.com/binary/pytorch/1.12.1/cu113/2022-12-05/smdistributed_dataparallel-1.6.0-cp38-cp38-linux_x86_64.whl
4576
4677
47-
----
48-
49-
Release History
50-
===============
51-
5278
SageMaker Distributed Data Parallel 1.5.0 Release Notes
5379
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5480

doc/api/training/smd_model_parallel_release_notes/smd_model_parallel_change_log.rst

Lines changed: 41 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -6,9 +6,47 @@ New features, bug fixes, and improvements are regularly made to the SageMaker
66
distributed model parallel library.
77

88

9-
SageMaker Distributed Model Parallel 1.13.0 Release Notes
9+
SageMaker Distributed Model Parallel 1.14.0 Release Notes
1010
=========================================================
1111

12+
*Date: Jan. 30. 2023*
13+
14+
**Currency Updates**
15+
16+
* Added support for PyTorch v1.13.1
17+
18+
**Improvements**
19+
20+
* Upgraded the flash-attention (https://github.com/HazyResearch/flash-attention) library to v0.2.6.post1
21+
22+
**Migration to AWS Deep Learning Containers**
23+
24+
This version passed benchmark testing and is migrated to the following AWS Deep Learning Containers (DLC):
25+
26+
- SageMaker training container for PyTorch v1.13.1
27+
28+
.. code::
29+
30+
763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:1.13.1-gpu-py39-cu117-ubuntu20.04-sagemaker
31+
32+
33+
Binary file of this version of the library for `custom container
34+
<https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-sm-sdk.html#model-parallel-bring-your-own-container>`_ users:
35+
36+
- For PyTorch 1.13.1
37+
38+
.. code::
39+
40+
https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/pytorch-1.13.1/build-artifacts/2023-01-19-18-35/smdistributed_modelparallel-1.14.0-cp39-cp39-linux_x86_64.whl
41+
42+
----
43+
44+
Release History
45+
===============
46+
47+
SageMaker Distributed Model Parallel 1.13.0 Release Notes
48+
---------------------------------------------------------
49+
1250
*Date: Dec. 15. 2022*
1351

1452
**New Features**
@@ -46,16 +84,12 @@ This version passed benchmark testing and is migrated to the following AWS Deep
4684
Binary file of this version of the library for `custom container
4785
<https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-sm-sdk.html#model-parallel-bring-your-own-container>`_ users:
4886

49-
- For PyTorch 1.12.0
87+
- For PyTorch 1.12.1
5088

5189
.. code::
5290
5391
https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/pytorch-1.12.1/build-artifacts/2022-12-08-21-34/smdistributed_modelparallel-1.13.0-cp38-cp38-linux_x86_64.whl
5492
55-
----
56-
57-
Release History
58-
===============
5993
6094
SageMaker Distributed Model Parallel 1.11.0 Release Notes
6195
---------------------------------------------------------
@@ -92,7 +126,7 @@ Binary file of this version of the library for `custom container
92126

93127
.. code::
94128
95-
https://sagemaker-distribu
129+
https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/pytorch-1.12.0/build-artifacts/2022-08-12-16-58/smdistributed_modelparallel-1.11.0-cp38-cp38-linux_x86_64.whl
96130
97131
SageMaker Distributed Model Parallel 1.10.1 Release Notes
98132
---------------------------------------------------------

doc/api/training/smp_versions/latest.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,8 +10,8 @@ depending on which version of the library you need to use.
1010
To use the library, reference the
1111
**Common API** documentation alongside the framework specific API documentation.
1212

13-
Version 1.11.0, 1.13.0 (Latest)
14-
===============================
13+
Version 1.11.0, 1.13.0, 1.14.0 (Latest)
14+
=======================================
1515

1616
To use the library, reference the Common API documentation alongside the framework specific API documentation.
1717

doc/overview.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1578,6 +1578,7 @@ A few important notes:
15781578
- If you are using S3 data as input, it is pulled from S3 to your local environment. Ensure you have sufficient space to store the data locally.
15791579
- If you run into problems it often due to different Docker containers conflicting. Killing these containers and re-running often solves your problems.
15801580
- Local Mode requires Docker Compose and `nvidia-docker2 <https://github.com/NVIDIA/nvidia-docker>`__ for ``local_gpu``.
1581+
- Set ``USE_SHORT_LIVED_CREDENTIALS=1`` if running on EC2 and you would like to use the session credentials instead of EC2 Metadata Service credentials.
15811582
15821583
.. warning::
15831584

doc/workflows/pipelines/sagemaker.workflow.pipelines.rst

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -169,4 +169,8 @@ Steps
169169

170170
.. autoclass:: sagemaker.workflow.fail_step.FailStep
171171

172+
.. autoclass:: sagemaker.workflow.emr_step.EMRStepConfig
173+
174+
.. autoclass:: sagemaker.workflow.emr_step.EMRStep
175+
172176
.. autoclass:: sagemaker.workflow.automl_step.AutoMLStep

src/sagemaker/clarify.py

Lines changed: 24 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1423,8 +1423,8 @@ def run_post_training_bias(
14231423
self,
14241424
data_config: DataConfig,
14251425
data_bias_config: BiasConfig,
1426-
model_config: ModelConfig,
1427-
model_predicted_label_config: ModelPredictedLabelConfig,
1426+
model_config: Optional[ModelConfig] = None,
1427+
model_predicted_label_config: Optional[ModelPredictedLabelConfig] = None,
14281428
methods: Union[str, List[str]] = "all",
14291429
wait: bool = True,
14301430
logs: bool = True,
@@ -1444,7 +1444,8 @@ def run_post_training_bias(
14441444
data_config (:class:`~sagemaker.clarify.DataConfig`): Config of the input/output data.
14451445
data_bias_config (:class:`~sagemaker.clarify.BiasConfig`): Config of sensitive groups.
14461446
model_config (:class:`~sagemaker.clarify.ModelConfig`): Config of the model and its
1447-
endpoint to be created.
1447+
endpoint to be created. This is required unless``predicted_label_dataset_uri`` or
1448+
``predicted_label`` is provided in ``data_config``.
14481449
model_predicted_label_config (:class:`~sagemaker.clarify.ModelPredictedLabelConfig`):
14491450
Config of how to extract the predicted label from the model output.
14501451
methods (str or list[str]): Selector of a subset of potential metrics:
@@ -1508,7 +1509,7 @@ def run_bias(
15081509
self,
15091510
data_config: DataConfig,
15101511
bias_config: BiasConfig,
1511-
model_config: ModelConfig,
1512+
model_config: Optional[ModelConfig] = None,
15121513
model_predicted_label_config: Optional[ModelPredictedLabelConfig] = None,
15131514
pre_training_methods: Union[str, List[str]] = "all",
15141515
post_training_methods: Union[str, List[str]] = "all",
@@ -1529,7 +1530,8 @@ def run_bias(
15291530
data_config (:class:`~sagemaker.clarify.DataConfig`): Config of the input/output data.
15301531
bias_config (:class:`~sagemaker.clarify.BiasConfig`): Config of sensitive groups.
15311532
model_config (:class:`~sagemaker.clarify.ModelConfig`): Config of the model and its
1532-
endpoint to be created.
1533+
endpoint to be created. This is required unless``predicted_label_dataset_uri`` or
1534+
``predicted_label`` is provided in ``data_config``.
15331535
model_predicted_label_config (:class:`~sagemaker.clarify.ModelPredictedLabelConfig`):
15341536
Config of how to extract the predicted label from the model output.
15351537
pre_training_methods (str or list[str]): Selector of a subset of potential metrics:
@@ -1930,16 +1932,30 @@ def _add_predictor(
19301932
):
19311933
"""Extends analysis config with predictor."""
19321934
analysis_config = {**analysis_config}
1933-
analysis_config["predictor"] = model_config.get_predictor_config()
1935+
if isinstance(model_config, ModelConfig):
1936+
analysis_config["predictor"] = model_config.get_predictor_config()
1937+
else:
1938+
if "shap" in analysis_config["methods"] or "pdp" in analysis_config["methods"]:
1939+
raise ValueError(
1940+
"model_config must be provided when explainability methods are selected."
1941+
)
1942+
if (
1943+
"predicted_label_dataset_uri" not in analysis_config
1944+
and "predicted_label" not in analysis_config
1945+
):
1946+
raise ValueError(
1947+
"model_config must be provided when `predicted_label_dataset_uri` or "
1948+
"`predicted_label` are not provided in data_config."
1949+
)
19341950
if isinstance(model_predicted_label_config, ModelPredictedLabelConfig):
19351951
(
19361952
probability_threshold,
19371953
predictor_config,
19381954
) = model_predicted_label_config.get_predictor_config()
1939-
if predictor_config:
1955+
if predictor_config and "predictor" in analysis_config:
19401956
analysis_config["predictor"].update(predictor_config)
19411957
_set(probability_threshold, "probability_threshold", analysis_config)
1942-
else:
1958+
elif "predictor" in analysis_config:
19431959
_set(model_predicted_label_config, "label", analysis_config["predictor"])
19441960
return analysis_config
19451961

src/sagemaker/debugger/framework_profile.py

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -143,6 +143,12 @@ def __init__(
143143
profiling. Configure it using the
144144
:class:`~sagemaker.debugger.metrics_config.DetailedProfilingConfig` class.
145145
Pass ``DetailedProfilingConfig()`` to use the default configuration.
146+
147+
.. warning::
148+
This detailed framework profiling feature discontinues support for TensorFlow v2.11
149+
and later. To use the detailed profiling feature, use previous versions of
150+
TensorFlow between v2.3.1 and v2.10.0.
151+
146152
dataloader_profiling_config (DataloaderProfilingConfig): The configuration for
147153
dataloader metrics profiling. Configure it using the
148154
:class:`~sagemaker.debugger.metrics_config.DataloaderProfilingConfig` class.

0 commit comments

Comments
 (0)