@@ -34,36 +34,36 @@ You can also train and deploy models with **Amazon algorithms**,
34
34
which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training.
35
35
If you have **your own algorithms ** built into SageMaker compatible Docker containers, you can train and host models using these as well.
36
36
37
- For detailed API reference please go to: `Read the Docs <https://sagemaker.readthedocs.io >`_
37
+ For detailed documentation, including the API reference, see `Read the Docs <https://sagemaker.readthedocs.io >`_.
38
38
39
39
Table of Contents
40
40
-----------------
41
41
42
- 1 . `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk >`__
43
- 2 . `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html >`__
44
- 3 . `MXNet SageMaker Estimators < #mxnet- sagemaker-estimators >`__
45
- 4 . `TensorFlow SageMaker Estimators < #tensorflow- sagemaker-estimators >`__
46
- 5 . `Chainer SageMaker Estimators < #chainer- sagemaker-estimators >`__
47
- 6 . `PyTorch SageMaker Estimators < #pytorch- sagemaker-estimators >`__
48
- 7 . `Scikit-learn SageMaker Estimators < #scikit-learn- sagemaker-estimators >`__
49
- 8 . `XGBoost SageMaker Estimators < #xgboost- sagemaker-estimators >`__
50
- 9 . `SageMaker Reinforcement Learning Estimators <# sagemaker-reinforcement-learning-estimators >`__
51
- 10 . `SageMaker SparkML Serving <#sagemaker-sparkml-serving >`__
52
- 11 . `AWS SageMaker Estimators <#aws- sagemaker-estimators >`__
53
- 12 . `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators >`__
54
- 13 . `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages >`__
55
- 14 . `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators >`__
56
- 15 . `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning >`__
57
- 16 . `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform >`__
58
- 17 . `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc >`__
59
- 18 . `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model >`__
60
- 19 . `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines >`__
61
- 20 . `Amazon SageMaker Operators for Kubernetes <#amazon- sagemaker-operators-for-kubernetes >`__
62
- 21 . `Amazon SageMaker Operators in Apache Airflow <# sagemaker-workflow >`__
63
- 22 . `SageMaker Autopilot <# sagemaker-autopilot >`__
64
- 23 . `Model Monitoring <#amazon- sagemaker-model-monitoring >`__
65
- 24 . `SageMaker Debugger <#amazon- sagemaker-debugger >`__
66
- 25 . `SageMaker Processing <#amazon- sagemaker-processing >`__
42
+ # . `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk >`__
43
+ # . `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html >`__
44
+ # . `Using MXNet < https:// sagemaker.readthedocs.io/en/stable/using_mxnet.html >`__
45
+ # . `Using TensorFlow < https:// sagemaker.readthedocs.io/en/stable/using_tf.html >`__
46
+ # . `Using Chainer < https:// sagemaker.readthedocs.io/en/stable/using_chainer.html >`__
47
+ # . `Using PyTorch < https:// sagemaker.readthedocs.io/en/stable/using_pytorch.html >`__
48
+ # . `Using Scikit-learn < https:// sagemaker.readthedocs.io/en/stable/using_sklearn.html >`__
49
+ # . `Using XGBoost < https:// sagemaker.readthedocs.io/en/stable/using_xgboost.html >`__
50
+ # . `SageMaker Reinforcement Learning Estimators <https:// sagemaker.readthedocs.io/en/stable/using_rl.html >`__
51
+ # . `SageMaker SparkML Serving <#sagemaker-sparkml-serving >`__
52
+ # . `Amazon SageMaker Built-in Algorithm Estimators <src/ sagemaker/amazon/README.rst >`__
53
+ # . `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators >`__
54
+ # . `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages >`__
55
+ # . `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators >`__
56
+ # . `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning >`__
57
+ # . `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform >`__
58
+ # . `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc >`__
59
+ # . `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model >`__
60
+ # . `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines >`__
61
+ # . `Amazon SageMaker Operators for Kubernetes <https:// sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html >`__
62
+ # . `Amazon SageMaker Operators in Apache Airflow <https:// sagemaker.readthedocs.io/en/stable/using_workflow.html >`__
63
+ # . `SageMaker Autopilot <src/ sagemaker/automl/README.rst >`__
64
+ # . `Model Monitoring <https:// sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html >`__
65
+ # . `SageMaker Debugger <https:// sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html >`__
66
+ # . `SageMaker Processing <https:// sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html >`__
67
67
68
68
69
69
Installing the SageMaker Python SDK
@@ -197,120 +197,6 @@ Preview the site with a Python web server:
197
197
198
198
View the website by visiting http://localhost:8000
199
199
200
-
201
- MXNet SageMaker Estimators
202
- --------------------------
203
-
204
- By using MXNet SageMaker Estimators, you can train and host MXNet models on Amazon SageMaker.
205
-
206
- Supported versions of MXNet: ``0.12.1 ``, ``1.0.0 ``, ``1.1.0 ``, ``1.2.1 ``, ``1.3.0 ``, ``1.4.0 ``, ``1.4.1 ``, ``1.6.0 ``.
207
-
208
- Supported versions of MXNet for Elastic Inference: ``1.3.0 ``, ``1.4.0 ``, ``1.4.1 ``.
209
-
210
- We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
211
-
212
- For more information, see `Using MXNet with the SageMaker Python SDK `_.
213
-
214
- .. _Using MXNet with the SageMaker Python SDK : https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
215
-
216
-
217
- TensorFlow SageMaker Estimators
218
- -------------------------------
219
-
220
- By using TensorFlow SageMaker Estimators, you can train and host TensorFlow models on Amazon SageMaker.
221
-
222
- Supported versions of TensorFlow: ``1.4.1 ``, ``1.5.0 ``, ``1.6.0 ``, ``1.7.0 ``, ``1.8.0 ``, ``1.9.0 ``, ``1.10.0 ``, ``1.11.0 ``, ``1.12.0 ``, ``1.13.1 ``, ``1.14.0 ``, ``1.15.0 ``, ``1.15.2 ``, ``2.0.0 ``, ``2.0.1 ``, ``2.1.0 ``.
223
-
224
- Supported versions of TensorFlow for Elastic Inference: ``1.11.0 ``, ``1.12.0 ``, ``1.13.1 ``, ``1.14.0 ``, ``1.15.0 ``, ``2.0.0 ``.
225
-
226
- We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
227
-
228
- For more information, see `Using TensorFlow with the SageMaker Python SDK `_.
229
-
230
- .. _Using TensorFlow with the SageMaker Python SDK : https://sagemaker.readthedocs.io/en/stable/using_tf.html
231
-
232
-
233
- Chainer SageMaker Estimators
234
- ----------------------------
235
-
236
- By using Chainer SageMaker Estimators, you can train and host Chainer models on Amazon SageMaker.
237
-
238
- Supported versions of Chainer: ``4.0.0 ``, ``4.1.0 ``, ``5.0.0 ``.
239
-
240
- We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
241
-
242
- For more information about Chainer, see https://github.com/chainer/chainer.
243
-
244
- For more information about Chainer SageMaker Estimators, see `Using Chainer with the SageMaker Python SDK `_.
245
-
246
- .. _Using Chainer with the SageMaker Python SDK : https://sagemaker.readthedocs.io/en/stable/using_chainer.html
247
-
248
-
249
- PyTorch SageMaker Estimators
250
- ----------------------------
251
-
252
- With PyTorch SageMaker Estimators, you can train and host PyTorch models on Amazon SageMaker.
253
-
254
- Supported versions of PyTorch: ``0.4.0 ``, ``1.0.0 ``, ``1.1.0 ``, ``1.2.0 ``, ``1.3.1 ``, ``1.4.0 ``, ``1.5.0 ``.
255
-
256
- Supported versions of PyTorch for Elastic Inference: ``1.3.1 ``.
257
-
258
- We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
259
-
260
- For more information about PyTorch, see https://github.com/pytorch/pytorch.
261
-
262
- For more information about PyTorch SageMaker Estimators, see `Using PyTorch with the SageMaker Python SDK `_.
263
-
264
- .. _Using PyTorch with the SageMaker Python SDK : https://sagemaker.readthedocs.io/en/stable/using_pytorch.html
265
-
266
-
267
- Scikit-learn SageMaker Estimators
268
- ---------------------------------
269
-
270
- With Scikit-learn SageMaker Estimators, you can train and host Scikit-learn models on Amazon SageMaker.
271
-
272
- Supported versions of Scikit-learn: ``0.20.0 ``.
273
-
274
- We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
275
-
276
- For more information about Scikit-learn, see https://scikit-learn.org/stable/
277
-
278
- For more information about Scikit-learn SageMaker Estimators, see `Using Scikit-learn with the SageMaker Python SDK `_.
279
-
280
- .. _Using Scikit-learn with the SageMaker Python SDK : https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
281
-
282
- XGBoost SageMaker Estimators
283
- ----------------------------
284
-
285
- With XGBoost SageMaker Estimators, you can train and host XGBoost models on Amazon SageMaker.
286
-
287
- Supported versions of XGBoost: ``0.90-1 ``.
288
-
289
- We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
290
-
291
- For more information about XGBoost, see https://xgboost.readthedocs.io/en/latest/
292
-
293
- For more information about XGBoost SageMaker Estimators, see `Using XGBoost with the SageMaker Python SDK `_.
294
-
295
- .. _Using XGBoost with the SageMaker Python SDK : https://sagemaker.readthedocs.io/en/stable/using_xgboost.html
296
-
297
-
298
- SageMaker Reinforcement Learning Estimators
299
- -------------------------------------------
300
-
301
- With Reinforcement Learning (RL) Estimators, you can use reinforcement learning to train models on Amazon SageMaker.
302
-
303
- Supported versions of Coach: ``0.10.1 ``, ``0.11.1 `` with TensorFlow, ``0.11.0 `` with TensorFlow or MXNet.
304
- For more information about Coach, see https://github.com/NervanaSystems/coach
305
-
306
- Supported versions of Ray: ``0.5.3 ``, ``0.6.5 `` with TensorFlow.
307
- For more information about Ray, see https://github.com/ray-project/ray
308
-
309
- For more information about SageMaker RL Estimators, see `SageMaker Reinforcement Learning Estimators `_.
310
-
311
- .. _SageMaker Reinforcement Learning Estimators : src/sagemaker/rl/README.rst
312
-
313
-
314
200
SageMaker SparkML Serving
315
201
-------------------------
316
202
@@ -343,74 +229,3 @@ For more information about the different ``content-type`` and ``Accept`` formats
343
229
``schema `` that SageMaker SparkML Serving recognizes, please see `SageMaker SparkML Serving Container `_.
344
230
345
231
.. _SageMaker SparkML Serving Container : https://github.com/aws/sagemaker-sparkml-serving-container
346
-
347
- AWS SageMaker Estimators
348
- ------------------------
349
- Amazon SageMaker provides several built-in machine learning algorithms that you can use to solve a variety of problems.
350
-
351
- The full list of algorithms is available at: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
352
-
353
- The SageMaker Python SDK includes estimator wrappers for the AWS K-means, Principal Components Analysis (PCA), Linear Learner, Factorization Machines,
354
- Latent Dirichlet Allocation (LDA), Neural Topic Model (NTM), Random Cut Forest, k-nearest neighbors (k-NN), Object2Vec, and IP Insights algorithms.
355
-
356
- For more information, see `AWS SageMaker Estimators and Models `_.
357
-
358
- .. _AWS SageMaker Estimators and Models : src/sagemaker/amazon/README.rst
359
-
360
- Amazon SageMaker Operators for Kubernetes
361
- -----------------------------------------
362
-
363
- You can use Amazon SageMaker Operators for Kubernetes to optimize hyperparameters for a given model, run batch transform jobs over existing models, and set up inference endpoints.
364
-
365
- For more information, see `Amazon SageMaker Operators for Kubernetes `_.
366
-
367
- .. _Amazon SageMaker Operators for Kubernetes : https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html
368
-
369
- Amazon SageMaker Operators in Apache Airflow
370
- --------------------------------------------
371
-
372
- You can use Apache Airflow to author, schedule and monitor SageMaker workflow.
373
-
374
- For more information, see `Amazon SageMaker Operators in Apache Airflow `_.
375
-
376
- .. _Amazon SageMaker Operators in Apache Airflow : https://sagemaker.readthedocs.io/en/stable/using_workflow.html
377
-
378
- SageMaker Autopilot
379
- -------------------
380
-
381
- Amazon SageMaker Autopilot is an automated machine learning solution (commonly referred to as "AutoML") for tabular
382
- datasets. It automatically trains and tunes the best machine learning models for classification or regression based
383
- on your data, and hosts a series of models on an Inference Pipeline.
384
-
385
- For more information about SageMaker Autopilot, see `SageMaker Autopilot `_.
386
-
387
- .. _SageMaker Autopilot : src/sagemaker/automl/README.rst
388
-
389
- Amazon SageMaker Model Monitoring
390
- ---------------------------------
391
-
392
- You can use Amazon SageMaker Model Monitoring to automatically detect concept drift by monitoring your machine learning models.
393
-
394
- For more information, see `Amazon SageMaker Model Monitoring `_.
395
-
396
- .. _Amazon SageMaker Model Monitoring : https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html
397
-
398
- Amazon SageMaker Debugger
399
- -------------------------
400
-
401
- You can use Amazon SageMaker Debugger to automatically detect anomalies while training your machine learning models.
402
-
403
- For more information, see `Amazon SageMaker Debugger `_.
404
-
405
- .. _Amazon SageMaker Debugger : https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html
406
-
407
-
408
- Amazon SageMaker Processing
409
- ---------------------------------
410
-
411
- You can use Amazon SageMaker Processing to perform data processing tasks such as data pre- and post-processing, feature engineering, data validation, and model evaluation
412
-
413
-
414
- For more information, see `Amazon SageMaker Processing `_.
415
-
416
- .. _Amazon SageMaker Processing : https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html
0 commit comments