Skip to content

Commit 0f5c9b5

Browse files
committed
Merge branch 'master' into zwei
2 parents 242f81b + 9b32c19 commit 0f5c9b5

File tree

128 files changed

+3100
-2038
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

128 files changed

+3100
-2038
lines changed

CHANGELOG.md

+92
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,97 @@
11
# Changelog
22

3+
## v1.60.2 (2020-05-29)
4+
5+
### Bug Fixes and Other Changes
6+
7+
* [doc] Added Amazon Components for Kubeflow Pipelines
8+
9+
## v1.60.1.post0 (2020-05-28)
10+
11+
### Documentation Changes
12+
13+
* clarify that entry_point must be in the root of source_dir (if applicable)
14+
15+
## v1.60.1 (2020-05-27)
16+
17+
### Bug Fixes and Other Changes
18+
19+
* refactor the navigation
20+
21+
### Documentation Changes
22+
23+
* fix undoc directive; removes extra tabs
24+
25+
## v1.60.0.post0 (2020-05-26)
26+
27+
### Documentation Changes
28+
29+
* remove some duplicated documentation from main README
30+
* fix TF requirements.txt documentation
31+
32+
## v1.60.0 (2020-05-25)
33+
34+
### Features
35+
36+
* support TensorFlow training 2.2
37+
38+
### Bug Fixes and Other Changes
39+
40+
* blacklist unknown xgboost image versions
41+
* use format strings instead of os.path.join for S3 URI in S3Downloader
42+
43+
### Documentation Changes
44+
45+
* consolidate framework version and image information
46+
47+
## v1.59.0 (2020-05-21)
48+
49+
### Features
50+
51+
* MXNet elastic inference support
52+
53+
### Bug Fixes and Other Changes
54+
55+
* add Batch Transform data processing options to Airflow config
56+
* add v2 warning messages
57+
* don't try to use local output path for KMS key in Local Mode
58+
59+
### Documentation Changes
60+
61+
* add instructions for how to enable 'local code' for Local Mode
62+
63+
## v1.58.4 (2020-05-20)
64+
65+
### Bug Fixes and Other Changes
66+
67+
* update AutoML default max_candidate value to use the service default
68+
* add describe_transform_job in session class
69+
70+
### Documentation Changes
71+
72+
* clarify support for requirements.txt in Tensorflow docs
73+
74+
### Testing and Release Infrastructure
75+
76+
* wait for DisassociateTrialComponent to take effect in experiment integ test cleanup
77+
78+
## v1.58.3 (2020-05-19)
79+
80+
### Bug Fixes and Other Changes
81+
82+
* update DatasetFormat key name for sagemakerCaptureJson
83+
84+
### Documentation Changes
85+
86+
* update Processing job max_runtime_in_seconds docstring
87+
88+
## v1.58.2.post0 (2020-05-18)
89+
90+
### Documentation Changes
91+
92+
* specify S3 source_dir needs to point to a tar file
93+
* update PyTorch BYOM topic
94+
395
## v1.58.2 (2020-05-13)
496

597
### Bug Fixes and Other Changes

README.rst

+26-211
Original file line numberDiff line numberDiff line change
@@ -34,36 +34,36 @@ You can also train and deploy models with **Amazon algorithms**,
3434
which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training.
3535
If you have **your own algorithms** built into SageMaker compatible Docker containers, you can train and host models using these as well.
3636

37-
For detailed API reference please go to: `Read the Docs <https://sagemaker.readthedocs.io>`_
37+
For detailed documentation, including the API reference, see `Read the Docs <https://sagemaker.readthedocs.io>`_.
3838

3939
Table of Contents
4040
-----------------
4141

42-
1. `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk>`__
43-
2. `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html>`__
44-
3. `MXNet SageMaker Estimators <#mxnet-sagemaker-estimators>`__
45-
4. `TensorFlow SageMaker Estimators <#tensorflow-sagemaker-estimators>`__
46-
5. `Chainer SageMaker Estimators <#chainer-sagemaker-estimators>`__
47-
6. `PyTorch SageMaker Estimators <#pytorch-sagemaker-estimators>`__
48-
7. `Scikit-learn SageMaker Estimators <#scikit-learn-sagemaker-estimators>`__
49-
8. `XGBoost SageMaker Estimators <#xgboost-sagemaker-estimators>`__
50-
9. `SageMaker Reinforcement Learning Estimators <#sagemaker-reinforcement-learning-estimators>`__
51-
10. `SageMaker SparkML Serving <#sagemaker-sparkml-serving>`__
52-
11. `AWS SageMaker Estimators <#aws-sagemaker-estimators>`__
53-
12. `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators>`__
54-
13. `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages>`__
55-
14. `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators>`__
56-
15. `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning>`__
57-
16. `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform>`__
58-
17. `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc>`__
59-
18. `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model>`__
60-
19. `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines>`__
61-
20. `Amazon SageMaker Operators for Kubernetes <#amazon-sagemaker-operators-for-kubernetes>`__
62-
21. `Amazon SageMaker Operators in Apache Airflow <#sagemaker-workflow>`__
63-
22. `SageMaker Autopilot <#sagemaker-autopilot>`__
64-
23. `Model Monitoring <#amazon-sagemaker-model-monitoring>`__
65-
24. `SageMaker Debugger <#amazon-sagemaker-debugger>`__
66-
25. `SageMaker Processing <#amazon-sagemaker-processing>`__
42+
#. `Installing SageMaker Python SDK <#installing-the-sagemaker-python-sdk>`__
43+
#. `Using the SageMaker Python SDK <https://sagemaker.readthedocs.io/en/stable/overview.html>`__
44+
#. `Using MXNet <https://sagemaker.readthedocs.io/en/stable/using_mxnet.html>`__
45+
#. `Using TensorFlow <https://sagemaker.readthedocs.io/en/stable/using_tf.html>`__
46+
#. `Using Chainer <https://sagemaker.readthedocs.io/en/stable/using_chainer.html>`__
47+
#. `Using PyTorch <https://sagemaker.readthedocs.io/en/stable/using_pytorch.html>`__
48+
#. `Using Scikit-learn <https://sagemaker.readthedocs.io/en/stable/using_sklearn.html>`__
49+
#. `Using XGBoost <https://sagemaker.readthedocs.io/en/stable/using_xgboost.html>`__
50+
#. `SageMaker Reinforcement Learning Estimators <https://sagemaker.readthedocs.io/en/stable/using_rl.html>`__
51+
#. `SageMaker SparkML Serving <#sagemaker-sparkml-serving>`__
52+
#. `Amazon SageMaker Built-in Algorithm Estimators <src/sagemaker/amazon/README.rst>`__
53+
#. `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators>`__
54+
#. `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages>`__
55+
#. `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators>`__
56+
#. `SageMaker Automatic Model Tuning <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-automatic-model-tuning>`__
57+
#. `SageMaker Batch Transform <https://sagemaker.readthedocs.io/en/stable/overview.html#sagemaker-batch-transform>`__
58+
#. `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc>`__
59+
#. `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model>`__
60+
#. `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines>`__
61+
#. `Amazon SageMaker Operators for Kubernetes <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html>`__
62+
#. `Amazon SageMaker Operators in Apache Airflow <https://sagemaker.readthedocs.io/en/stable/using_workflow.html>`__
63+
#. `SageMaker Autopilot <src/sagemaker/automl/README.rst>`__
64+
#. `Model Monitoring <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html>`__
65+
#. `SageMaker Debugger <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html>`__
66+
#. `SageMaker Processing <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html>`__
6767

6868

6969
Installing the SageMaker Python SDK
@@ -197,120 +197,6 @@ Preview the site with a Python web server:
197197

198198
View the website by visiting http://localhost:8000
199199

200-
201-
MXNet SageMaker Estimators
202-
--------------------------
203-
204-
By using MXNet SageMaker Estimators, you can train and host MXNet models on Amazon SageMaker.
205-
206-
Supported versions of MXNet: ``0.12.1``, ``1.0.0``, ``1.1.0``, ``1.2.1``, ``1.3.0``, ``1.4.0``, ``1.4.1``, ``1.6.0``.
207-
208-
Supported versions of MXNet for Elastic Inference: ``1.3.0``, ``1.4.0``, ``1.4.1``.
209-
210-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
211-
212-
For more information, see `Using MXNet with the SageMaker Python SDK`_.
213-
214-
.. _Using MXNet with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_mxnet.html
215-
216-
217-
TensorFlow SageMaker Estimators
218-
-------------------------------
219-
220-
By using TensorFlow SageMaker Estimators, you can train and host TensorFlow models on Amazon SageMaker.
221-
222-
Supported versions of TensorFlow: ``1.4.1``, ``1.5.0``, ``1.6.0``, ``1.7.0``, ``1.8.0``, ``1.9.0``, ``1.10.0``, ``1.11.0``, ``1.12.0``, ``1.13.1``, ``1.14.0``, ``1.15.0``, ``1.15.2``, ``2.0.0``, ``2.0.1``, ``2.1.0``.
223-
224-
Supported versions of TensorFlow for Elastic Inference: ``1.11.0``, ``1.12.0``, ``1.13.1``, ``1.14.0``, ``1.15.0``, ``2.0.0``.
225-
226-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
227-
228-
For more information, see `Using TensorFlow with the SageMaker Python SDK`_.
229-
230-
.. _Using TensorFlow with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_tf.html
231-
232-
233-
Chainer SageMaker Estimators
234-
----------------------------
235-
236-
By using Chainer SageMaker Estimators, you can train and host Chainer models on Amazon SageMaker.
237-
238-
Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``.
239-
240-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
241-
242-
For more information about Chainer, see https://github.com/chainer/chainer.
243-
244-
For more information about Chainer SageMaker Estimators, see `Using Chainer with the SageMaker Python SDK`_.
245-
246-
.. _Using Chainer with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_chainer.html
247-
248-
249-
PyTorch SageMaker Estimators
250-
----------------------------
251-
252-
With PyTorch SageMaker Estimators, you can train and host PyTorch models on Amazon SageMaker.
253-
254-
Supported versions of PyTorch: ``0.4.0``, ``1.0.0``, ``1.1.0``, ``1.2.0``, ``1.3.1``, ``1.4.0``, ``1.5.0``.
255-
256-
Supported versions of PyTorch for Elastic Inference: ``1.3.1``.
257-
258-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
259-
260-
For more information about PyTorch, see https://github.com/pytorch/pytorch.
261-
262-
For more information about PyTorch SageMaker Estimators, see `Using PyTorch with the SageMaker Python SDK`_.
263-
264-
.. _Using PyTorch with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_pytorch.html
265-
266-
267-
Scikit-learn SageMaker Estimators
268-
---------------------------------
269-
270-
With Scikit-learn SageMaker Estimators, you can train and host Scikit-learn models on Amazon SageMaker.
271-
272-
Supported versions of Scikit-learn: ``0.20.0``.
273-
274-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
275-
276-
For more information about Scikit-learn, see https://scikit-learn.org/stable/
277-
278-
For more information about Scikit-learn SageMaker Estimators, see `Using Scikit-learn with the SageMaker Python SDK`_.
279-
280-
.. _Using Scikit-learn with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
281-
282-
XGBoost SageMaker Estimators
283-
----------------------------
284-
285-
With XGBoost SageMaker Estimators, you can train and host XGBoost models on Amazon SageMaker.
286-
287-
Supported versions of XGBoost: ``0.90-1``.
288-
289-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
290-
291-
For more information about XGBoost, see https://xgboost.readthedocs.io/en/latest/
292-
293-
For more information about XGBoost SageMaker Estimators, see `Using XGBoost with the SageMaker Python SDK`_.
294-
295-
.. _Using XGBoost with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_xgboost.html
296-
297-
298-
SageMaker Reinforcement Learning Estimators
299-
-------------------------------------------
300-
301-
With Reinforcement Learning (RL) Estimators, you can use reinforcement learning to train models on Amazon SageMaker.
302-
303-
Supported versions of Coach: ``0.10.1``, ``0.11.1`` with TensorFlow, ``0.11.0`` with TensorFlow or MXNet.
304-
For more information about Coach, see https://github.com/NervanaSystems/coach
305-
306-
Supported versions of Ray: ``0.5.3``, ``0.6.5`` with TensorFlow.
307-
For more information about Ray, see https://github.com/ray-project/ray
308-
309-
For more information about SageMaker RL Estimators, see `SageMaker Reinforcement Learning Estimators`_.
310-
311-
.. _SageMaker Reinforcement Learning Estimators: src/sagemaker/rl/README.rst
312-
313-
314200
SageMaker SparkML Serving
315201
-------------------------
316202

@@ -343,74 +229,3 @@ For more information about the different ``content-type`` and ``Accept`` formats
343229
``schema`` that SageMaker SparkML Serving recognizes, please see `SageMaker SparkML Serving Container`_.
344230

345231
.. _SageMaker SparkML Serving Container: https://github.com/aws/sagemaker-sparkml-serving-container
346-
347-
AWS SageMaker Estimators
348-
------------------------
349-
Amazon SageMaker provides several built-in machine learning algorithms that you can use to solve a variety of problems.
350-
351-
The full list of algorithms is available at: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
352-
353-
The SageMaker Python SDK includes estimator wrappers for the AWS K-means, Principal Components Analysis (PCA), Linear Learner, Factorization Machines,
354-
Latent Dirichlet Allocation (LDA), Neural Topic Model (NTM), Random Cut Forest, k-nearest neighbors (k-NN), Object2Vec, and IP Insights algorithms.
355-
356-
For more information, see `AWS SageMaker Estimators and Models`_.
357-
358-
.. _AWS SageMaker Estimators and Models: src/sagemaker/amazon/README.rst
359-
360-
Amazon SageMaker Operators for Kubernetes
361-
-----------------------------------------
362-
363-
You can use Amazon SageMaker Operators for Kubernetes to optimize hyperparameters for a given model, run batch transform jobs over existing models, and set up inference endpoints.
364-
365-
For more information, see `Amazon SageMaker Operators for Kubernetes`_.
366-
367-
.. _Amazon SageMaker Operators for Kubernetes: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html
368-
369-
Amazon SageMaker Operators in Apache Airflow
370-
--------------------------------------------
371-
372-
You can use Apache Airflow to author, schedule and monitor SageMaker workflow.
373-
374-
For more information, see `Amazon SageMaker Operators in Apache Airflow`_.
375-
376-
.. _Amazon SageMaker Operators in Apache Airflow: https://sagemaker.readthedocs.io/en/stable/using_workflow.html
377-
378-
SageMaker Autopilot
379-
-------------------
380-
381-
Amazon SageMaker Autopilot is an automated machine learning solution (commonly referred to as "AutoML") for tabular
382-
datasets. It automatically trains and tunes the best machine learning models for classification or regression based
383-
on your data, and hosts a series of models on an Inference Pipeline.
384-
385-
For more information about SageMaker Autopilot, see `SageMaker Autopilot`_.
386-
387-
.. _SageMaker Autopilot: src/sagemaker/automl/README.rst
388-
389-
Amazon SageMaker Model Monitoring
390-
---------------------------------
391-
392-
You can use Amazon SageMaker Model Monitoring to automatically detect concept drift by monitoring your machine learning models.
393-
394-
For more information, see `Amazon SageMaker Model Monitoring`_.
395-
396-
.. _Amazon SageMaker Model Monitoring: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html
397-
398-
Amazon SageMaker Debugger
399-
-------------------------
400-
401-
You can use Amazon SageMaker Debugger to automatically detect anomalies while training your machine learning models.
402-
403-
For more information, see `Amazon SageMaker Debugger`_.
404-
405-
.. _Amazon SageMaker Debugger: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html
406-
407-
408-
Amazon SageMaker Processing
409-
---------------------------------
410-
411-
You can use Amazon SageMaker Processing to perform data processing tasks such as data pre- and post-processing, feature engineering, data validation, and model evaluation
412-
413-
414-
For more information, see `Amazon SageMaker Processing`_.
415-
416-
.. _Amazon SageMaker Processing: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html

VERSION

+1-1
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
1.58.3.dev0
1+
1.60.3.dev0

doc/airflow/index.rst

+15
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,15 @@
1+
#################
2+
Airflow Workflows
3+
#################
4+
5+
SageMaker APIs to export configurations for creating and managing Airflow workflows.
6+
7+
.. toctree::
8+
:maxdepth: 1
9+
10+
using_workflow
11+
12+
.. toctree::
13+
:maxdepth: 2
14+
15+
sagemaker.workflow.airflow
File renamed without changes.

doc/algorithms/index.rst

+20
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
######################
2+
First-Party Algorithms
3+
######################
4+
5+
Amazon SageMaker provides implementations of some common machine learning algorithms optimized for GPU architecture and massive datasets.
6+
7+
.. toctree::
8+
:maxdepth: 2
9+
10+
sagemaker.amazon.amazon_estimator
11+
factorization_machines
12+
ipinsights
13+
kmeans
14+
knn
15+
lda
16+
linear_learner
17+
ntm
18+
object2vec
19+
pca
20+
randomcutforest
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

0 commit comments

Comments
 (0)