1
1
.. _sdp_1.2.2_release_note :
2
2
3
- Sagemaker Distributed Data Parallel 1.2.2 Release Notes
3
+ SageMaker Distributed Data Parallel 1.2.2 Release Notes
4
4
=======================================================
5
5
6
6
*Date: November. 24. 2021 *
@@ -35,7 +35,7 @@ This version passed benchmark testing and is migrated to the following AWS Deep
35
35
Release History
36
36
===============
37
37
38
- Sagemaker Distributed Data Parallel 1.2.1 Release Notes
38
+ SageMaker Distributed Data Parallel 1.2.1 Release Notes
39
39
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
40
40
41
41
*Date: June. 29. 2021 *
@@ -66,7 +66,7 @@ This version passed benchmark testing and is migrated to the following AWS Deep
66
66
763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-training:2.5.0-gpu-py37-cu112-ubuntu18.04-v1.0
67
67
68
68
69
- Sagemaker Distributed Data Parallel 1.2.0 Release Notes
69
+ SageMaker Distributed Data Parallel 1.2.0 Release Notes
70
70
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
71
71
72
72
- New features
@@ -79,15 +79,15 @@ Sagemaker Distributed Data Parallel 1.2.0 Release Notes
79
79
AllReduce. For best performance, it is recommended you use an
80
80
instance type that supports Amazon Elastic Fabric Adapter
81
81
(ml.p3dn.24xlarge and ml.p4d.24xlarge) when you train a model using
82
- Sagemaker Distributed data parallel.
82
+ SageMaker Distributed data parallel.
83
83
84
84
**Bug Fixes: **
85
85
86
86
- Improved performance on single node and small clusters.
87
87
88
88
----
89
89
90
- Sagemaker Distributed Data Parallel 1.1.2 Release Notes
90
+ SageMaker Distributed Data Parallel 1.1.2 Release Notes
91
91
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
92
92
93
93
- Bug Fixes
@@ -101,15 +101,15 @@ Sagemaker Distributed Data Parallel 1.1.2 Release Notes
101
101
102
102
**Known Issues: **
103
103
104
- - Sagemaker Distributed data parallel has slower throughput than NCCL
104
+ - SageMaker Distributed data parallel has slower throughput than NCCL
105
105
when run using a single node. For the best performance, use
106
106
multi-node distributed training with smdistributed.dataparallel. Use
107
107
a single node only for experimental runs while preparing your
108
108
training pipeline.
109
109
110
110
----
111
111
112
- Sagemaker Distributed Data Parallel 1.1.1 Release Notes
112
+ SageMaker Distributed Data Parallel 1.1.1 Release Notes
113
113
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
114
114
115
115
- New Features
@@ -136,7 +136,7 @@ Sagemaker Distributed Data Parallel 1.1.1 Release Notes
136
136
137
137
----
138
138
139
- Sagemaker Distributed Data Parallel 1.1.0 Release Notes
139
+ SageMaker Distributed Data Parallel 1.1.0 Release Notes
140
140
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
141
141
142
142
- New Features
@@ -172,7 +172,7 @@ SDK Guide
172
172
173
173
----
174
174
175
- Sagemaker Distributed Data Parallel 1.0.0 Release Notes
175
+ SageMaker Distributed Data Parallel 1.0.0 Release Notes
176
176
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
177
177
178
178
- First Release
0 commit comments