|
11 | 11 | # ANY KIND, either express or implied. See the License for the specific
|
12 | 12 | # language governing permissions and limitations under the License.
|
13 | 13 | """Placeholder docstring"""
|
14 |
| -from __future__ import print_function, absolute_import |
| 14 | +from __future__ import absolute_import, print_function |
15 | 15 |
|
16 | 16 | import json
|
17 | 17 | import logging
|
18 | 18 | import os
|
19 | 19 | import uuid
|
| 20 | +from abc import ABCMeta, abstractmethod |
20 | 21 |
|
21 |
| -from abc import ABCMeta |
22 |
| -from abc import abstractmethod |
23 |
| - |
24 |
| -from six import with_metaclass |
25 |
| -from six import string_types |
| 22 | +from six import string_types, with_metaclass |
26 | 23 | from six.moves.urllib.parse import urlparse
|
| 24 | + |
27 | 25 | import sagemaker
|
28 |
| -from sagemaker import git_utils, image_uris |
| 26 | +from sagemaker import git_utils, image_uris, vpc_utils |
29 | 27 | from sagemaker.analytics import TrainingJobAnalytics
|
30 |
| -from sagemaker.debugger import TensorBoardOutputConfig # noqa: F401 # pylint: disable=unused-import |
31 |
| -from sagemaker.debugger import ( |
| 28 | +from sagemaker.debugger import ( # noqa: F401 # pylint: disable=unused-import |
32 | 29 | DEBUGGER_FLAG,
|
33 | 30 | DebuggerHookConfig,
|
34 | 31 | FrameworkProfile,
|
35 |
| - get_default_profiler_rule, |
36 |
| - get_rule_container_image_uri, |
37 | 32 | ProfilerConfig,
|
38 | 33 | ProfilerRule,
|
39 | 34 | Rule,
|
| 35 | + TensorBoardOutputConfig, |
| 36 | + get_default_profiler_rule, |
| 37 | + get_rule_container_image_uri, |
40 | 38 | )
|
41 |
| -from sagemaker.deprecations import ( |
42 |
| - removed_kwargs, |
43 |
| - removed_function, |
44 |
| - renamed_kwargs, |
45 |
| -) |
46 |
| -from sagemaker.s3 import S3Uploader, parse_s3_url |
47 |
| - |
| 39 | +from sagemaker.deprecations import removed_function, removed_kwargs, renamed_kwargs |
48 | 40 | from sagemaker.fw_utils import (
|
49 |
| - tar_and_upload_dir, |
50 | 41 | UploadedCode,
|
51 |
| - validate_source_dir, |
52 | 42 | _region_supports_debugger,
|
53 | 43 | _region_supports_profiler,
|
54 | 44 | get_mp_parameters,
|
| 45 | + tar_and_upload_dir, |
| 46 | + validate_source_dir, |
55 | 47 | )
|
56 |
| -from sagemaker.workflow.properties import Properties |
57 |
| -from sagemaker.workflow.parameters import Parameter |
58 |
| -from sagemaker.workflow.entities import Expression |
59 | 48 | from sagemaker.inputs import TrainingInput
|
60 | 49 | from sagemaker.job import _Job
|
61 | 50 | from sagemaker.local import LocalSession
|
62 |
| -from sagemaker.model import Model, NEO_ALLOWED_FRAMEWORKS |
63 | 51 | from sagemaker.model import (
|
64 |
| - SCRIPT_PARAM_NAME, |
65 |
| - DIR_PARAM_NAME, |
66 | 52 | CONTAINER_LOG_LEVEL_PARAM_NAME,
|
| 53 | + DIR_PARAM_NAME, |
67 | 54 | JOB_NAME_PARAM_NAME,
|
| 55 | + NEO_ALLOWED_FRAMEWORKS, |
68 | 56 | SAGEMAKER_REGION_PARAM_NAME,
|
| 57 | + SCRIPT_PARAM_NAME, |
| 58 | + Model, |
69 | 59 | )
|
70 | 60 | from sagemaker.predictor import Predictor
|
| 61 | +from sagemaker.s3 import S3Uploader, parse_s3_url |
71 | 62 | from sagemaker.session import Session
|
72 | 63 | from sagemaker.transformer import Transformer
|
73 | 64 | from sagemaker.utils import (
|
|
77 | 68 | get_config_value,
|
78 | 69 | name_from_base,
|
79 | 70 | )
|
80 |
| -from sagemaker import vpc_utils |
| 71 | +from sagemaker.workflow.entities import Expression |
| 72 | +from sagemaker.workflow.parameters import Parameter |
| 73 | +from sagemaker.workflow.properties import Properties |
81 | 74 |
|
82 | 75 | logger = logging.getLogger(__name__)
|
83 | 76 |
|
@@ -150,11 +143,14 @@ def __init__(
|
150 | 143 | 60 * 60). After this amount of time Amazon SageMaker terminates
|
151 | 144 | the job regardless of its current status.
|
152 | 145 | input_mode (str): The input mode that the algorithm supports
|
153 |
| - (default: 'File'). Valid modes: 'File' - Amazon SageMaker copies |
154 |
| - the training dataset from the S3 location to a local directory. |
| 146 | + (default: 'File'). Valid modes: |
| 147 | + 'File' - Amazon SageMaker copiesthe training dataset from the |
| 148 | + S3 location to a local directory. |
155 | 149 | 'Pipe' - Amazon SageMaker streams data directly from S3 to the
|
156 |
| - container via a Unix-named pipe. This argument can be overriden |
157 |
| - on a per-channel basis using |
| 150 | + container via a Unix-named pipe. |
| 151 | + 'FastFile' - Amazon SageMaker streams data from S3 on demand instead of |
| 152 | + downloading the entire dataset before training begins. This argument can |
| 153 | + be overriden on a per-channel basis using |
158 | 154 | ``sagemaker.inputs.TrainingInput.input_mode``.
|
159 | 155 | output_path (str): S3 location for saving the training result (model
|
160 | 156 | artifacts and output files). If not specified, results are
|
|
0 commit comments