@@ -37,83 +37,83 @@ class FactorizationMachines(AmazonAlgorithmEstimatorBase):
37
37
sparse datasets economically.
38
38
"""
39
39
40
- repo_name = "factorization-machines"
41
- repo_version = 1
40
+ repo_name : str = "factorization-machines"
41
+ repo_version : int = 1
42
42
43
- num_factors = hp ("num_factors" , gt (0 ), "An integer greater than zero" , int )
44
- predictor_type = hp (
43
+ num_factors : hp = hp ("num_factors" , gt (0 ), "An integer greater than zero" , int )
44
+ predictor_type : hp = hp (
45
45
"predictor_type" ,
46
46
isin ("binary_classifier" , "regressor" ),
47
47
'Value "binary_classifier" or "regressor"' ,
48
48
str ,
49
49
)
50
- epochs = hp ("epochs" , gt (0 ), "An integer greater than 0" , int )
51
- clip_gradient = hp ("clip_gradient" , (), "A float value" , float )
52
- eps = hp ("eps" , (), "A float value" , float )
53
- rescale_grad = hp ("rescale_grad" , (), "A float value" , float )
54
- bias_lr = hp ("bias_lr" , ge (0 ), "A non-negative float" , float )
55
- linear_lr = hp ("linear_lr" , ge (0 ), "A non-negative float" , float )
56
- factors_lr = hp ("factors_lr" , ge (0 ), "A non-negative float" , float )
57
- bias_wd = hp ("bias_wd" , ge (0 ), "A non-negative float" , float )
58
- linear_wd = hp ("linear_wd" , ge (0 ), "A non-negative float" , float )
59
- factors_wd = hp ("factors_wd" , ge (0 ), "A non-negative float" , float )
60
- bias_init_method = hp (
50
+ epochs : hp = hp ("epochs" , gt (0 ), "An integer greater than 0" , int )
51
+ clip_gradient : hp = hp ("clip_gradient" , (), "A float value" , float )
52
+ eps : hp = hp ("eps" , (), "A float value" , float )
53
+ rescale_grad : hp = hp ("rescale_grad" , (), "A float value" , float )
54
+ bias_lr : hp = hp ("bias_lr" , ge (0 ), "A non-negative float" , float )
55
+ linear_lr : hp = hp ("linear_lr" , ge (0 ), "A non-negative float" , float )
56
+ factors_lr : hp = hp ("factors_lr" , ge (0 ), "A non-negative float" , float )
57
+ bias_wd : hp = hp ("bias_wd" , ge (0 ), "A non-negative float" , float )
58
+ linear_wd : hp = hp ("linear_wd" , ge (0 ), "A non-negative float" , float )
59
+ factors_wd : hp = hp ("factors_wd" , ge (0 ), "A non-negative float" , float )
60
+ bias_init_method : hp = hp (
61
61
"bias_init_method" ,
62
62
isin ("normal" , "uniform" , "constant" ),
63
63
'Value "normal", "uniform" or "constant"' ,
64
64
str ,
65
65
)
66
- bias_init_scale = hp ("bias_init_scale" , ge (0 ), "A non-negative float" , float )
67
- bias_init_sigma = hp ("bias_init_sigma" , ge (0 ), "A non-negative float" , float )
68
- bias_init_value = hp ("bias_init_value" , (), "A float value" , float )
69
- linear_init_method = hp (
66
+ bias_init_scale : hp = hp ("bias_init_scale" , ge (0 ), "A non-negative float" , float )
67
+ bias_init_sigma : hp = hp ("bias_init_sigma" , ge (0 ), "A non-negative float" , float )
68
+ bias_init_value : hp = hp ("bias_init_value" , (), "A float value" , float )
69
+ linear_init_method : hp = hp (
70
70
"linear_init_method" ,
71
71
isin ("normal" , "uniform" , "constant" ),
72
72
'Value "normal", "uniform" or "constant"' ,
73
73
str ,
74
74
)
75
- linear_init_scale = hp ("linear_init_scale" , ge (0 ), "A non-negative float" , float )
76
- linear_init_sigma = hp ("linear_init_sigma" , ge (0 ), "A non-negative float" , float )
77
- linear_init_value = hp ("linear_init_value" , (), "A float value" , float )
78
- factors_init_method = hp (
75
+ linear_init_scale : hp = hp ("linear_init_scale" , ge (0 ), "A non-negative float" , float )
76
+ linear_init_sigma : hp = hp ("linear_init_sigma" , ge (0 ), "A non-negative float" , float )
77
+ linear_init_value : hp = hp ("linear_init_value" , (), "A float value" , float )
78
+ factors_init_method : hp = hp (
79
79
"factors_init_method" ,
80
80
isin ("normal" , "uniform" , "constant" ),
81
81
'Value "normal", "uniform" or "constant"' ,
82
82
str ,
83
83
)
84
- factors_init_scale = hp ("factors_init_scale" , ge (0 ), "A non-negative float" , float )
85
- factors_init_sigma = hp ("factors_init_sigma" , ge (0 ), "A non-negative float" , float )
86
- factors_init_value = hp ("factors_init_value" , (), "A float value" , float )
84
+ factors_init_scale : hp = hp ("factors_init_scale" , ge (0 ), "A non-negative float" , float )
85
+ factors_init_sigma : hp = hp ("factors_init_sigma" , ge (0 ), "A non-negative float" , float )
86
+ factors_init_value : hp = hp ("factors_init_value" , (), "A float value" , float )
87
87
88
88
def __init__ (
89
89
self ,
90
- role ,
91
- instance_count = None ,
92
- instance_type = None ,
93
- num_factors = None ,
94
- predictor_type = None ,
95
- epochs = None ,
96
- clip_gradient = None ,
97
- eps = None ,
98
- rescale_grad = None ,
99
- bias_lr = None ,
100
- linear_lr = None ,
101
- factors_lr = None ,
102
- bias_wd = None ,
103
- linear_wd = None ,
104
- factors_wd = None ,
105
- bias_init_method = None ,
106
- bias_init_scale = None ,
107
- bias_init_sigma = None ,
108
- bias_init_value = None ,
109
- linear_init_method = None ,
110
- linear_init_scale = None ,
111
- linear_init_sigma = None ,
112
- linear_init_value = None ,
113
- factors_init_method = None ,
114
- factors_init_scale = None ,
115
- factors_init_sigma = None ,
116
- factors_init_value = None ,
90
+ role : str ,
91
+ instance_count : Optional [ Union [ int , PipelineVariable ]] = None ,
92
+ instance_type : Optional [ Union [ str , PipelineVariable ]] = None ,
93
+ num_factors : Optional [ int ] = None ,
94
+ predictor_type : Optional [ str ] = None ,
95
+ epochs : Optional [ int ] = None ,
96
+ clip_gradient : Optional [ float ] = None ,
97
+ eps : Optional [ float ] = None ,
98
+ rescale_grad : Optional [ float ] = None ,
99
+ bias_lr : Optional [ float ] = None ,
100
+ linear_lr : Optional [ float ] = None ,
101
+ factors_lr : Optional [ float ] = None ,
102
+ bias_wd : Optional [ float ] = None ,
103
+ linear_wd : Optional [ float ] = None ,
104
+ factors_wd : Optional [ float ] = None ,
105
+ bias_init_method : Optional [ str ] = None ,
106
+ bias_init_scale : Optional [ float ] = None ,
107
+ bias_init_sigma : Optional [ float ] = None ,
108
+ bias_init_value : Optional [ float ] = None ,
109
+ linear_init_method : Optional [ str ] = None ,
110
+ linear_init_scale : Optional [ float ] = None ,
111
+ linear_init_sigma : Optional [ float ] = None ,
112
+ linear_init_value : Optional [ float ] = None ,
113
+ factors_init_method : Optional [ str ] = None ,
114
+ factors_init_scale : Optional [ float ] = None ,
115
+ factors_init_sigma : Optional [ float ] = None ,
116
+ factors_init_value : Optional [ float ] = None ,
117
117
** kwargs
118
118
):
119
119
"""Factorization Machines is :class:`Estimator` for general-purpose supervised learning.
0 commit comments