-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathtest_model_trainer.py
1089 lines (985 loc) · 39 KB
/
test_model_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""ModelTrainer Tests."""
from __future__ import absolute_import
import shutil
import tempfile
import json
import os
import pytest
from unittest.mock import patch, MagicMock, ANY
from sagemaker import image_uris
from sagemaker_core.main.resources import TrainingJob
from sagemaker_core.main.shapes import (
ResourceConfig,
VpcConfig,
AlgorithmSpecification,
)
from sagemaker.config import SAGEMAKER, PYTHON_SDK, MODULES
from sagemaker.config.config_schema import (
MODEL_TRAINER,
_simple_path,
TRAINING_JOB_RESOURCE_CONFIG_PATH,
)
from sagemaker.modules import Session
from sagemaker.modules.train.model_trainer import ModelTrainer, Mode
from sagemaker.modules.constants import (
DEFAULT_INSTANCE_TYPE,
DISTRIBUTED_JSON,
SOURCE_CODE_JSON,
TRAIN_SCRIPT,
)
from sagemaker.modules.configs import (
Compute,
StoppingCondition,
RetryStrategy,
OutputDataConfig,
SourceCode,
RemoteDebugConfig,
TensorBoardOutputConfig,
InfraCheckConfig,
SessionChainingConfig,
InputData,
Networking,
TrainingImageConfig,
TrainingRepositoryAuthConfig,
CheckpointConfig,
Tag,
S3DataSource,
FileSystemDataSource,
Channel,
DataSource,
MetricDefinition,
)
from sagemaker.modules.distributed import Torchrun, SMP, MPI
from sagemaker.modules.train.sm_recipes.utils import _load_recipes_cfg
from sagemaker.modules.templates import EXEUCTE_TORCHRUN_DRIVER, EXECUTE_MPI_DRIVER
from tests.unit import DATA_DIR
DEFAULT_BASE_NAME = "dummy-image-job"
DEFAULT_IMAGE = "000000000000.dkr.ecr.us-west-2.amazonaws.com/dummy-image:latest"
DEFAULT_BUCKET = "sagemaker-us-west-2-000000000000"
DEFAULT_ROLE = "arn:aws:iam::000000000000:role/test-role"
DEFAULT_BUCKET_PREFIX = "sample-prefix"
DEFAULT_REGION = "us-west-2"
DEFAULT_SOURCE_DIR = f"{DATA_DIR}/modules/script_mode"
DEFAULT_COMPUTE_CONFIG = Compute(instance_type=DEFAULT_INSTANCE_TYPE, instance_count=1)
DEFAULT_OUTPUT_DATA_CONFIG = OutputDataConfig(
s3_output_path=f"s3://{DEFAULT_BUCKET}/{DEFAULT_BUCKET_PREFIX}/{DEFAULT_BASE_NAME}",
compression_type="GZIP",
kms_key_id=None,
)
DEFAULT_STOPPING_CONDITION = StoppingCondition(
max_runtime_in_seconds=3600,
max_pending_time_in_seconds=None,
max_wait_time_in_seconds=None,
)
DEFAULT_SOURCE_CODE = SourceCode(
source_dir=DEFAULT_SOURCE_DIR,
entry_script="custom_script.py",
)
UNSUPPORTED_SOURCE_CODE = SourceCode(
entry_script="train.py",
)
DEFAULT_ENTRYPOINT = ["/bin/bash"]
DEFAULT_ARGUMENTS = [
"-c",
(
"chmod +x /opt/ml/input/data/sm_drivers/sm_train.sh "
+ "&& /opt/ml/input/data/sm_drivers/sm_train.sh"
),
]
@pytest.fixture(scope="module", autouse=True)
def modules_session():
with patch("sagemaker.modules.Session", spec=Session) as session_mock:
session_instance = session_mock.return_value
session_instance.default_bucket.return_value = DEFAULT_BUCKET
session_instance.get_caller_identity_arn.return_value = DEFAULT_ROLE
session_instance.default_bucket_prefix = DEFAULT_BUCKET_PREFIX
session_instance.boto_session = MagicMock(spec="boto3.session.Session")
session_instance.boto_region_name = DEFAULT_REGION
yield session_instance
@pytest.fixture
def model_trainer():
trainer = ModelTrainer(
training_image=DEFAULT_IMAGE,
role=DEFAULT_ROLE,
compute=DEFAULT_COMPUTE_CONFIG,
stopping_condition=DEFAULT_STOPPING_CONDITION,
output_data_config=DEFAULT_OUTPUT_DATA_CONFIG,
)
return trainer
@pytest.mark.parametrize(
"test_case",
[
{
"init_params": {},
"should_throw": True,
},
{
"init_params": {
"training_image": DEFAULT_IMAGE,
},
"should_throw": False,
},
{
"init_params": {
"training_image": DEFAULT_IMAGE,
"algorithm_name": "dummy-arn",
},
"should_throw": True,
},
{
"init_params": {
"training_image": DEFAULT_IMAGE,
"source_code": UNSUPPORTED_SOURCE_CODE,
},
"should_throw": True,
},
{
"init_params": {
"training_image": DEFAULT_IMAGE,
"source_code": DEFAULT_SOURCE_CODE,
},
"should_throw": False,
},
],
ids=[
"no_params",
"training_image_and_algorithm_name",
"only_training_image",
"unsupported_source_code",
"supported_source_code",
],
)
def test_model_trainer_param_validation(test_case, modules_session):
if test_case["should_throw"]:
with pytest.raises(ValueError):
ModelTrainer(**test_case["init_params"], sagemaker_session=modules_session)
else:
trainer = ModelTrainer(**test_case["init_params"], sagemaker_session=modules_session)
assert trainer is not None
assert trainer.training_image == DEFAULT_IMAGE
assert trainer.compute == DEFAULT_COMPUTE_CONFIG
assert trainer.output_data_config == DEFAULT_OUTPUT_DATA_CONFIG
assert trainer.stopping_condition == DEFAULT_STOPPING_CONDITION
assert trainer.base_job_name == DEFAULT_BASE_NAME
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_train_with_default_params(mock_training_job, model_trainer):
model_trainer.train()
mock_training_job.create.assert_called_once()
training_job_instance = mock_training_job.create.return_value
training_job_instance.wait.assert_called_once_with(logs=True)
@pytest.mark.parametrize(
"default_config",
[
{
"path_name": "sourceCode",
"config_value": {"command": "echo 'Hello World' && env"},
},
{
"path_name": "compute",
"config_value": {"volume_size_in_gb": 45},
},
{
"path_name": "networking",
"config_value": {
"enable_network_isolation": True,
"security_group_ids": ["sg-1"],
"subnets": ["subnet-1"],
},
},
{
"path_name": "stoppingCondition",
"config_value": {"max_runtime_in_seconds": 15},
},
{
"path_name": "trainingImageConfig",
"config_value": {"training_repository_access_mode": "private"},
},
{
"path_name": "outputDataConfig",
"config_value": {"s3_output_path": "Sample S3 path"},
},
{
"path_name": "checkpointConfig",
"config_value": {"s3_uri": "sample uri"},
},
],
)
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
@patch("sagemaker.modules.train.model_trainer.resolve_value_from_config")
@patch("sagemaker.modules.train.model_trainer.ModelTrainer.create_input_data_channel")
def test_train_with_intelligent_defaults(
mock_create_input_data_channel,
mock_resolve_value_from_config,
mock_training_job,
default_config,
model_trainer,
):
mock_resolve_value_from_config.side_effect = lambda **kwargs: (
default_config["config_value"]
if kwargs["config_path"]
== _simple_path(SAGEMAKER, PYTHON_SDK, MODULES, MODEL_TRAINER, default_config["path_name"])
else None
)
model_trainer.train()
mock_training_job.create.assert_called_once()
training_job_instance = mock_training_job.create.return_value
training_job_instance.wait.assert_called_once_with(logs=True)
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
@patch("sagemaker.modules.train.model_trainer.resolve_value_from_config")
def test_train_with_intelligent_defaults_training_job_space(
mock_resolve_value_from_config, mock_training_job, model_trainer
):
mock_resolve_value_from_config.side_effect = lambda **kwargs: (
{
"instanceType": DEFAULT_INSTANCE_TYPE,
"instanceCount": 1,
"volumeSizeInGB": 30,
}
if kwargs["config_path"] == TRAINING_JOB_RESOURCE_CONFIG_PATH
else None
)
model_trainer.train()
mock_training_job.create.assert_called_once_with(
training_job_name=ANY,
algorithm_specification=ANY,
hyper_parameters={},
input_data_config=[],
resource_config=ResourceConfig(
volume_size_in_gb=30,
instance_type="ml.m5.xlarge",
instance_count=1,
volume_kms_key_id=None,
keep_alive_period_in_seconds=None,
instance_groups=None,
training_plan_arn=None,
),
vpc_config=None,
session=ANY,
role_arn="arn:aws:iam::000000000000:" "role/test-role",
tags=None,
stopping_condition=StoppingCondition(
max_runtime_in_seconds=3600,
max_wait_time_in_seconds=None,
max_pending_time_in_seconds=None,
),
output_data_config=OutputDataConfig(
s3_output_path="s3://"
"sagemaker-us-west-2"
"-000000000000/"
"sample-prefix/"
"dummy-image-job",
kms_key_id=None,
compression_type="GZIP",
),
checkpoint_config=None,
environment=None,
enable_managed_spot_training=None,
enable_inter_container_traffic_encryption=None,
enable_network_isolation=None,
remote_debug_config=None,
tensor_board_output_config=None,
retry_strategy=None,
infra_check_config=None,
session_chaining_config=None,
)
training_job_instance = mock_training_job.create.return_value
training_job_instance.wait.assert_called_once_with(logs=True)
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
@patch.object(ModelTrainer, "_get_input_data_config")
def test_train_with_input_data_channels(mock_get_input_config, mock_training_job, model_trainer):
train_data = InputData(channel_name="train", data_source="train/dir")
test_data = InputData(channel_name="test", data_source="test/dir")
mock_input_data_config = [train_data, test_data]
model_trainer.train(input_data_config=mock_input_data_config)
mock_get_input_config.assert_called_once_with(mock_input_data_config, ANY)
mock_training_job.create.assert_called_once()
@pytest.mark.parametrize(
"test_case",
[
{
"channel_name": "test",
"data_source": DATA_DIR,
"valid": True,
},
{
"channel_name": "test",
"data_source": f"s3://{DEFAULT_BUCKET}/{DEFAULT_BASE_NAME}-job/input/test",
"valid": True,
},
{
"channel_name": "test",
"data_source": S3DataSource(
s3_data_type="S3Prefix",
s3_uri=f"s3://{DEFAULT_BUCKET}/{DEFAULT_BASE_NAME}-job/input/test",
s3_data_distribution_type="FullyReplicated",
),
"valid": True,
},
{
"channel_name": "test",
"data_source": FileSystemDataSource(
file_system_id="fs-000000000000",
file_system_access_mode="ro",
file_system_type="EFS",
directory_path="/data/test",
),
"valid": True,
},
{
"channel_name": "test",
"data_source": "fake/path",
"valid": False,
},
],
ids=[
"valid_local_path",
"valid_s3_path",
"valid_s3_data_source",
"valid_file_system_data_source",
"invalid_path",
],
)
@patch("sagemaker.modules.train.model_trainer.Session.upload_data")
@patch("sagemaker.modules.train.model_trainer.Session.default_bucket")
def test_create_input_data_channel(mock_default_bucket, mock_upload_data, model_trainer, test_case):
expected_s3_uri = f"s3://{DEFAULT_BUCKET}/{DEFAULT_BASE_NAME}-job/input/test"
mock_upload_data.return_value = expected_s3_uri
mock_default_bucket.return_value = DEFAULT_BUCKET
if not test_case["valid"]:
with pytest.raises(ValueError):
model_trainer.create_input_data_channel(
test_case["channel_name"], test_case["data_source"]
)
else:
channel = model_trainer.create_input_data_channel(
test_case["channel_name"], test_case["data_source"]
)
assert channel.channel_name == test_case["channel_name"]
if isinstance(test_case["data_source"], S3DataSource):
assert channel.data_source.s3_data_source == test_case["data_source"]
elif isinstance(test_case["data_source"], FileSystemDataSource):
assert channel.data_source.file_system_data_source == test_case["data_source"]
else:
assert channel.data_source.s3_data_source.s3_uri == expected_s3_uri
@pytest.mark.parametrize(
"test_case",
[
{
"source_code": DEFAULT_SOURCE_CODE,
"distributed": Torchrun(),
"expected_template": EXEUCTE_TORCHRUN_DRIVER,
"expected_hyperparameters": {},
},
{
"source_code": DEFAULT_SOURCE_CODE,
"distributed": Torchrun(
smp=SMP(
hybrid_shard_degree=3,
sm_activation_offloading=True,
allow_empty_shards=True,
tensor_parallel_degree=5,
)
),
"expected_template": EXEUCTE_TORCHRUN_DRIVER,
"expected_hyperparameters": {
"mp_parameters": json.dumps(
{
"hybrid_shard_degree": 3,
"sm_activation_offloading": True,
"allow_empty_shards": True,
"tensor_parallel_degree": 5,
}
),
},
},
{
"source_code": DEFAULT_SOURCE_CODE,
"distributed": MPI(
custom_mpi_options=["-x", "VAR1", "-x", "VAR2"],
),
"expected_template": EXECUTE_MPI_DRIVER,
"expected_hyperparameters": {},
},
],
ids=[
"torchrun",
"torchrun_smp",
"mpi",
],
)
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
@patch("sagemaker.modules.train.model_trainer.TemporaryDirectory")
@patch("sagemaker.modules.train.model_trainer.resolve_value_from_config")
def test_train_with_distributed_config(
mock_resolve_value_from_config,
mock_tmp_dir,
mock_training_job,
test_case,
request,
modules_session,
):
mock_resolve_value_from_config.return_value = None
modules_session.upload_data.return_value = (
f"s3://{DEFAULT_BUCKET}/{DEFAULT_BASE_NAME}-job/input/test"
)
tmp_dir = tempfile.TemporaryDirectory()
tmp_dir._cleanup = False
tmp_dir.cleanup = lambda: None
mock_tmp_dir.return_value = tmp_dir
expected_train_script_path = os.path.join(tmp_dir.name, TRAIN_SCRIPT)
expected_runner_json_path = os.path.join(tmp_dir.name, DISTRIBUTED_JSON)
expected_source_code_json_path = os.path.join(tmp_dir.name, SOURCE_CODE_JSON)
try:
model_trainer = ModelTrainer(
sagemaker_session=modules_session,
training_image=DEFAULT_IMAGE,
source_code=test_case["source_code"],
distributed=test_case["distributed"],
)
model_trainer.train()
mock_training_job.create.assert_called_once()
assert mock_training_job.create.call_args.kwargs["hyper_parameters"] == (
test_case["expected_hyperparameters"]
)
assert os.path.exists(expected_train_script_path)
with open(expected_train_script_path, "r") as f:
train_script_content = f.read()
assert test_case["expected_template"] in train_script_content
assert os.path.exists(expected_runner_json_path)
with open(expected_runner_json_path, "r") as f:
runner_json_content = f.read()
assert test_case["distributed"].model_dump(exclude_none=True) == (
json.loads(runner_json_content)
)
assert os.path.exists(expected_source_code_json_path)
with open(expected_source_code_json_path, "r") as f:
source_code_json_content = f.read()
assert test_case["source_code"].model_dump(exclude_none=True) == (
json.loads(source_code_json_content)
)
assert os.path.exists(expected_source_code_json_path)
with open(expected_source_code_json_path, "r") as f:
source_code_json_content = f.read()
assert test_case["source_code"].model_dump(exclude_none=True) == (
json.loads(source_code_json_content)
)
finally:
shutil.rmtree(tmp_dir.name)
assert not os.path.exists(tmp_dir.name)
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_train_stores_created_training_job(mock_training_job, model_trainer):
mock_training_job.create.return_value = TrainingJob(training_job_name="Created-job")
model_trainer.train(wait=False)
assert model_trainer._latest_training_job is not None
assert model_trainer._latest_training_job == TrainingJob(training_job_name="Created-job")
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_tensorboard_output_config(mock_training_job, modules_session):
image_uri = DEFAULT_IMAGE
role = DEFAULT_ROLE
tensorboard_output_config = TensorBoardOutputConfig(
s3_output_path=f"s3://{DEFAULT_BUCKET}/{DEFAULT_BASE_NAME}",
local_path="/opt/ml/output/tensorboard",
)
model_trainer = ModelTrainer(
training_image=image_uri,
sagemaker_session=modules_session,
role=role,
).with_tensorboard_output_config(tensorboard_output_config)
assert model_trainer._tensorboard_output_config == tensorboard_output_config
with patch("sagemaker.modules.train.model_trainer.Session.upload_data") as mock_upload_data:
mock_upload_data.return_value = "s3://dummy-bucket/dummy-prefix"
model_trainer.train()
mock_training_job.create.assert_called_once()
assert (
mock_training_job.create.call_args.kwargs["tensor_board_output_config"]
== tensorboard_output_config
)
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_retry_strategy(mock_training_job, modules_session):
image_uri = DEFAULT_IMAGE
role = DEFAULT_ROLE
retry_strategy = RetryStrategy(
maximum_retry_attempts=3,
)
model_trainer = ModelTrainer(
training_image=image_uri,
sagemaker_session=modules_session,
role=role,
).with_retry_strategy(retry_strategy)
assert model_trainer._retry_strategy == retry_strategy
with patch("sagemaker.modules.train.model_trainer.Session.upload_data") as mock_upload_data:
mock_upload_data.return_value = "s3://dummy-bucket/dummy-prefix"
model_trainer.train()
mock_training_job.create.assert_called_once()
assert mock_training_job.create.call_args.kwargs["retry_strategy"] == retry_strategy
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_infra_check_config(mock_training_job, modules_session):
image_uri = DEFAULT_IMAGE
role = DEFAULT_ROLE
infra_check_config = InfraCheckConfig(
enable_infra_check=True,
)
model_trainer = ModelTrainer(
training_image=image_uri,
sagemaker_session=modules_session,
role=role,
).with_infra_check_config(infra_check_config)
assert model_trainer._infra_check_config == infra_check_config
with patch("sagemaker.modules.train.model_trainer.Session.upload_data") as mock_upload_data:
mock_upload_data.return_value = "s3://dummy-bucket/dummy-prefix"
model_trainer.train()
mock_training_job.create.assert_called_once()
assert mock_training_job.create.call_args.kwargs["infra_check_config"] == infra_check_config
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_session_chaining_config(mock_training_job, modules_session):
image_uri = DEFAULT_IMAGE
role = DEFAULT_ROLE
session_chaining_config = SessionChainingConfig(
enable_session_tag_chaining=True,
)
model_trainer = ModelTrainer(
training_image=image_uri,
sagemaker_session=modules_session,
role=role,
).with_session_chaining_config(session_chaining_config)
assert model_trainer._session_chaining_config == session_chaining_config
with patch("sagemaker.modules.train.model_trainer.Session.upload_data") as mock_upload_data:
mock_upload_data.return_value = "s3://dummy-bucket/dummy-prefix"
model_trainer.train()
mock_training_job.create.assert_called_once()
assert (
mock_training_job.create.call_args.kwargs["session_chaining_config"]
== session_chaining_config
)
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_remote_debug_config(mock_training_job, modules_session):
image_uri = DEFAULT_IMAGE
role = DEFAULT_ROLE
remote_debug_config = RemoteDebugConfig(
enable_remote_debug=True,
)
model_trainer = ModelTrainer(
training_image=image_uri,
sagemaker_session=modules_session,
role=role,
).with_remote_debug_config(remote_debug_config)
assert model_trainer._remote_debug_config == remote_debug_config
with patch("sagemaker.modules.train.model_trainer.Session.upload_data") as mock_upload_data:
mock_upload_data.return_value = "s3://dummy-bucket/dummy-prefix"
model_trainer.train()
mock_training_job.create.assert_called_once()
assert (
mock_training_job.create.call_args.kwargs["remote_debug_config"] == remote_debug_config
)
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_metric_definitions(mock_training_job, modules_session):
image_uri = DEFAULT_IMAGE
role = DEFAULT_ROLE
metric_definitions = [
MetricDefinition(
name="loss",
regex="Loss: (.*?);",
)
]
model_trainer = ModelTrainer(
training_image=image_uri, sagemaker_session=modules_session, role=role
).with_metric_definitions(metric_definitions)
with patch("sagemaker.modules.train.model_trainer.Session.upload_data") as mock_upload_data:
mock_upload_data.return_value = "s3://dummy-bucket/dummy-prefix"
model_trainer.train()
mock_training_job.create.assert_called_once()
assert (
mock_training_job.create.call_args.kwargs["algorithm_specification"].metric_definitions
== metric_definitions
)
@patch("sagemaker.modules.train.model_trainer._get_unique_name")
@patch("sagemaker.modules.train.model_trainer.TrainingJob")
def test_model_trainer_full_init(mock_training_job, mock_unique_name, modules_session):
def mock_upload_data(path, bucket, key_prefix):
return f"s3://{bucket}/{key_prefix}"
modules_session.upload_data.side_effect = mock_upload_data
training_mode = Mode.SAGEMAKER_TRAINING_JOB
role = DEFAULT_ROLE
source_code = DEFAULT_SOURCE_CODE
distributed = Torchrun()
compute = Compute(
instance_type=DEFAULT_INSTANCE_TYPE,
instance_count=1,
volume_size_in_gb=30,
volume_kms_key_id="key-id",
keep_alive_period_in_seconds=3600,
enable_managed_spot_training=True,
)
networking = Networking(
security_group_ids=["sg-000000000000"],
subnets=["subnet-000000000000"],
enable_network_isolation=True,
enable_inter_container_traffic_encryption=True,
)
stopping_condition = DEFAULT_STOPPING_CONDITION
training_image = DEFAULT_IMAGE
training_image_config = TrainingImageConfig(
training_repository_access_mode="Platform",
training_repository_auth_config=TrainingRepositoryAuthConfig(
training_repository_credentials_provider_arn="arn:aws:lambda:us-west-2:000000000000:function:dummy-function"
),
)
output_data_config = DEFAULT_OUTPUT_DATA_CONFIG
local_input_data = InputData(
channel_name="train", data_source=f"{DEFAULT_SOURCE_DIR}/data/train"
)
s3_data_source_input = InputData(
channel_name="test",
data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri=f"s3://{DEFAULT_BUCKET}/{DEFAULT_BASE_NAME}/data/test",
s3_data_distribution_type="FullyReplicated",
attribute_names=["label"],
instance_group_names=["instance-group"],
),
)
file_system_input = InputData(
channel_name="validation",
data_source=FileSystemDataSource(
file_system_id="fs-000000000000",
file_system_access_mode="ro",
file_system_type="EFS",
directory_path="/data/validation",
),
)
input_data_config = [local_input_data, s3_data_source_input, file_system_input]
checkpoint_config = CheckpointConfig(
local_path="/opt/ml/checkpoints",
s3_uri=f"s3://{DEFAULT_BUCKET}/{DEFAULT_BASE_NAME}/checkpoints",
)
training_input_mode = "File"
environment = {"ENV_VAR": "value"}
hyperparameters = {"key": "value"}
tags = [Tag(key="key", value="value")]
model_trainer = ModelTrainer(
training_mode=training_mode,
sagemaker_session=modules_session,
role=role,
source_code=source_code,
distributed=distributed,
compute=compute,
networking=networking,
stopping_condition=stopping_condition,
training_image=training_image,
training_image_config=training_image_config,
output_data_config=output_data_config,
input_data_config=input_data_config,
checkpoint_config=checkpoint_config,
training_input_mode=training_input_mode,
environment=environment,
hyperparameters=hyperparameters,
tags=tags,
)
assert model_trainer.training_mode == training_mode
assert model_trainer.sagemaker_session == modules_session
assert model_trainer.role == role
assert model_trainer.source_code == source_code
assert model_trainer.distributed == distributed
assert model_trainer.compute == compute
assert model_trainer.networking == networking
assert model_trainer.stopping_condition == stopping_condition
assert model_trainer.training_image == training_image
assert model_trainer.training_image_config == training_image_config
assert model_trainer.output_data_config == output_data_config
assert model_trainer.input_data_config == input_data_config
assert model_trainer.checkpoint_config == checkpoint_config
assert model_trainer.training_input_mode == training_input_mode
assert model_trainer.environment == environment
assert model_trainer.hyperparameters == hyperparameters
assert model_trainer.tags == tags
unique_name = "training-job"
mock_unique_name.return_value = unique_name
model_trainer.train()
mock_training_job.create.assert_called_once_with(
training_job_name=unique_name,
algorithm_specification=AlgorithmSpecification(
training_input_mode=training_input_mode,
training_image=training_image,
algorithm_name=None,
metric_definitions=None,
container_entrypoint=DEFAULT_ENTRYPOINT,
container_arguments=DEFAULT_ARGUMENTS,
training_image_config=training_image_config,
),
hyper_parameters=hyperparameters,
input_data_config=[
Channel(
channel_name=local_input_data.channel_name,
data_source=DataSource(
s3_data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri=f"s3://{DEFAULT_BUCKET}/{DEFAULT_BUCKET_PREFIX}/{DEFAULT_BASE_NAME}/{unique_name}/input/train", # noqa: E501
s3_data_distribution_type="FullyReplicated",
)
),
input_mode="File",
),
Channel(
channel_name=s3_data_source_input.channel_name,
data_source=DataSource(s3_data_source=s3_data_source_input.data_source),
),
Channel(
channel_name=file_system_input.channel_name,
data_source=DataSource(file_system_data_source=file_system_input.data_source),
),
Channel(
channel_name="code",
data_source=DataSource(
s3_data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri=f"s3://{DEFAULT_BUCKET}/{DEFAULT_BUCKET_PREFIX}/{DEFAULT_BASE_NAME}/{unique_name}/input/code", # noqa: E501
s3_data_distribution_type="FullyReplicated",
)
),
input_mode="File",
),
Channel(
channel_name="sm_drivers",
data_source=DataSource(
s3_data_source=S3DataSource(
s3_data_type="S3Prefix",
s3_uri=f"s3://{DEFAULT_BUCKET}/{DEFAULT_BUCKET_PREFIX}/{DEFAULT_BASE_NAME}/{unique_name}/input/sm_drivers", # noqa: E501
s3_data_distribution_type="FullyReplicated",
),
),
input_mode="File",
),
],
resource_config=ResourceConfig(
instance_type=compute.instance_type,
instance_count=compute.instance_count,
volume_size_in_gb=compute.volume_size_in_gb,
volume_kms_key_id=compute.volume_kms_key_id,
keep_alive_period_in_seconds=compute.keep_alive_period_in_seconds,
instance_groups=None,
training_plan_arn=None,
),
vpc_config=VpcConfig(
security_group_ids=networking.security_group_ids,
subnets=networking.subnets,
),
session=ANY,
role_arn=role,
tags=tags,
stopping_condition=stopping_condition,
output_data_config=output_data_config,
checkpoint_config=checkpoint_config,
environment=environment,
enable_managed_spot_training=compute.enable_managed_spot_training,
enable_inter_container_traffic_encryption=(
networking.enable_inter_container_traffic_encryption
),
enable_network_isolation=networking.enable_network_isolation,
remote_debug_config=None,
tensor_board_output_config=None,
retry_strategy=None,
infra_check_config=None,
session_chaining_config=None,
)
def test_model_trainer_gpu_recipe_full_init(modules_session):
training_recipe = "training/llama/p4_hf_llama3_70b_seq8k_gpu"
recipe_overrides = {"run": {"results_dir": "/opt/ml/model"}}
compute = Compute(instance_type="ml.p4d.24xlarge", instance_count="2")
gpu_image_cfg = _load_recipes_cfg().get("gpu_image")
if isinstance(gpu_image_cfg, str):
expected_training_image = gpu_image_cfg
else:
expected_training_image = image_uris.retrieve(
gpu_image_cfg.get("framework"),
region=modules_session.boto_region_name,
version=gpu_image_cfg.get("version"),
image_scope="training",
**gpu_image_cfg.get("additional_args"),
)
expected_distributed = Torchrun(smp=SMP(random_seed=123456))
expected_hyperparameters = {"config-path": ".", "config-name": "recipe.yaml"}
networking = Networking(
security_group_ids=["sg-000000000000"],
subnets=["subnet-000000000000"],
enable_network_isolation=True,
enable_inter_container_traffic_encryption=True,
)
stopping_condition = DEFAULT_STOPPING_CONDITION
output_data_config = DEFAULT_OUTPUT_DATA_CONFIG
local_input_data = InputData(
channel_name="train", data_source=f"{DEFAULT_SOURCE_DIR}/data/train"
)
input_data_config = [local_input_data]
checkpoint_config = CheckpointConfig(
local_path="/opt/ml/checkpoints",
s3_uri=f"s3://{DEFAULT_BUCKET}/{DEFAULT_BASE_NAME}/checkpoints",
)
training_input_mode = "File"
environment = {"ENV_VAR": "value"}
tags = [Tag(key="key", value="value")]
requirements = f"{DEFAULT_SOURCE_DIR}/requirements.txt"
model_trainer = ModelTrainer.from_recipe(
training_recipe=training_recipe,
recipe_overrides=recipe_overrides,
compute=compute,
networking=networking,
stopping_condition=stopping_condition,
requirements=requirements,
output_data_config=output_data_config,
input_data_config=input_data_config,
checkpoint_config=checkpoint_config,
training_input_mode=training_input_mode,
environment=environment,
tags=tags,
sagemaker_session=modules_session,
role=DEFAULT_ROLE,
base_job_name=DEFAULT_BASE_NAME,
)
assert model_trainer.training_image == expected_training_image
assert model_trainer.distributed == expected_distributed
assert model_trainer.hyperparameters == expected_hyperparameters
assert model_trainer.source_code is not None
assert model_trainer.source_code.requirements == "requirements.txt"
assert model_trainer.compute == compute
assert model_trainer.networking == networking
assert model_trainer.stopping_condition == stopping_condition
assert model_trainer.output_data_config == output_data_config
assert model_trainer.input_data_config == input_data_config
assert model_trainer.checkpoint_config == checkpoint_config
assert model_trainer.training_input_mode == training_input_mode
assert model_trainer.environment == environment
assert model_trainer.tags == tags
@patch("sagemaker.modules.train.model_trainer._LocalContainer")
@patch("sagemaker.modules.train.model_trainer._get_unique_name")
@patch("sagemaker.modules.local_core.local_container.download_folder")
def test_model_trainer_local_full_init(
mock_download_folder, mock_unique_name, mock_local_container, modules_session
):
def mock_upload_data(path, bucket, key_prefix):
return f"s3://{bucket}/{key_prefix}"
modules_session.upload_data.side_effect = mock_upload_data
mock_download_folder.return_value = f"{DEFAULT_SOURCE_DIR}/data/test"
mock_local_container.train.return_value = None
training_mode = Mode.LOCAL_CONTAINER
role = DEFAULT_ROLE
source_code = DEFAULT_SOURCE_CODE
distributed = Torchrun()
compute = Compute(
instance_type=DEFAULT_INSTANCE_TYPE,
instance_count=1,
volume_size_in_gb=30,
volume_kms_key_id="key-id",
keep_alive_period_in_seconds=3600,
enable_managed_spot_training=True,
)
networking = Networking(
security_group_ids=["sg-000000000000"],
subnets=["subnet-000000000000"],
enable_network_isolation=True,
enable_inter_container_traffic_encryption=True,
)
stopping_condition = DEFAULT_STOPPING_CONDITION
training_image = DEFAULT_IMAGE
training_image_config = TrainingImageConfig(
training_repository_access_mode="Platform",
training_repository_auth_config=TrainingRepositoryAuthConfig(
training_repository_credentials_provider_arn="arn:aws:lambda:us-west-2:000000000000:function:dummy-function"
),
)
output_data_config = DEFAULT_OUTPUT_DATA_CONFIG
local_input_data = InputData(