Skip to content

Commit a13c9a0

Browse files
author
awstools
committed
feat(client-sagemaker): Amazon SageMaker Autopilot adds support for custom validation dataset and validation ratio through the CreateAutoMLJob and DescribeAutoMLJob APIs.
1 parent 12667a7 commit a13c9a0

36 files changed

+1072
-965
lines changed

clients/client-sagemaker/README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -7,12 +7,12 @@
77

88
AWS SDK for JavaScript SageMaker Client for Node.js, Browser and React Native.
99

10-
<p>Provides APIs for creating and managing Amazon SageMaker resources. </p>
10+
<p>Provides APIs for creating and managing SageMaker resources. </p>
1111
<p>Other Resources:</p>
1212
<ul>
1313
<li>
1414
<p>
15-
<a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">Amazon SageMaker Developer
15+
<a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">SageMaker Developer
1616
Guide</a>
1717
</p>
1818
</li>

clients/client-sagemaker/src/SageMaker.ts

+78-73
Large diffs are not rendered by default.

clients/client-sagemaker/src/SageMakerClient.ts

+2-2
Original file line numberDiff line numberDiff line change
@@ -1339,12 +1339,12 @@ type SageMakerClientResolvedConfigType = __SmithyResolvedConfiguration<__HttpHan
13391339
export interface SageMakerClientResolvedConfig extends SageMakerClientResolvedConfigType {}
13401340

13411341
/**
1342-
* <p>Provides APIs for creating and managing Amazon SageMaker resources. </p>
1342+
* <p>Provides APIs for creating and managing SageMaker resources. </p>
13431343
* <p>Other Resources:</p>
13441344
* <ul>
13451345
* <li>
13461346
* <p>
1347-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">Amazon SageMaker Developer
1347+
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">SageMaker Developer
13481348
* Guide</a>
13491349
* </p>
13501350
* </li>

clients/client-sagemaker/src/commands/AddTagsCommand.ts

+1-1
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ export interface AddTagsCommandInput extends AddTagsInput {}
1919
export interface AddTagsCommandOutput extends AddTagsOutput, __MetadataBearer {}
2020

2121
/**
22-
* <p>Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add
22+
* <p>Adds or overwrites one or more tags for the specified SageMaker resource. You can add
2323
* tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform
2424
* jobs, models, labeling jobs, work teams, endpoint configurations, and
2525
* endpoints.</p>

clients/client-sagemaker/src/commands/CreateAlgorithmCommand.ts

+1-1
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ export interface CreateAlgorithmCommandInput extends CreateAlgorithmInput {}
2222
export interface CreateAlgorithmCommandOutput extends CreateAlgorithmOutput, __MetadataBearer {}
2323

2424
/**
25-
* <p>Create a machine learning algorithm that you can use in Amazon SageMaker and list in the Amazon Web Services
25+
* <p>Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services
2626
* Marketplace.</p>
2727
* @example
2828
* Use a bare-bones client and the command you need to make an API call.

clients/client-sagemaker/src/commands/CreateCodeRepositoryCommand.ts

+2-2
Original file line numberDiff line numberDiff line change
@@ -22,9 +22,9 @@ export interface CreateCodeRepositoryCommandInput extends CreateCodeRepositoryIn
2222
export interface CreateCodeRepositoryCommandOutput extends CreateCodeRepositoryOutput, __MetadataBearer {}
2323

2424
/**
25-
* <p>Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the
25+
* <p>Creates a Git repository as a resource in your SageMaker account. You can associate the
2626
* repository with notebook instances so that you can use Git source control for the
27-
* notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can
27+
* notebooks you create. The Git repository is a resource in your SageMaker account, so it can
2828
* be associated with more than one notebook instance, and it persists independently from
2929
* the lifecycle of any notebook instances it is associated with.</p>
3030
* <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a> or in any

clients/client-sagemaker/src/commands/CreateEndpointCommand.ts

+7-7
Original file line numberDiff line numberDiff line change
@@ -22,11 +22,11 @@ export interface CreateEndpointCommandInput extends CreateEndpointInput {}
2222
export interface CreateEndpointCommandOutput extends CreateEndpointOutput, __MetadataBearer {}
2323

2424
/**
25-
* <p>Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker
25+
* <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker
2626
* uses the endpoint to provision resources and deploy models. You create the endpoint
2727
* configuration with the <a>CreateEndpointConfig</a> API. </p>
28-
* <p> Use this API to deploy models using Amazon SageMaker hosting services. </p>
29-
* <p>For an example that calls this method when deploying a model to Amazon SageMaker hosting services,
28+
* <p> Use this API to deploy models using SageMaker hosting services. </p>
29+
* <p>For an example that calls this method when deploying a model to SageMaker hosting services,
3030
* see the <a href="https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-fundamentals/create-endpoint/create_endpoint.ipynb">Create Endpoint example notebook.</a>
3131
* </p>
3232
* <note>
@@ -36,7 +36,7 @@ export interface CreateEndpointCommandOutput extends CreateEndpointOutput, __Met
3636
* create a new <code>EndpointConfig</code>.</p>
3737
* </note>
3838
* <p>The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account. </p>
39-
* <p>When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML
39+
* <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
4040
* compute instances), and deploys the model(s) on them. </p>
4141
*
4242
* <note>
@@ -51,13 +51,13 @@ export interface CreateEndpointCommandOutput extends CreateEndpointOutput, __Met
5151
* response should return the latest data. So retry logic is recommended to handle
5252
* these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p>
5353
* </note>
54-
* <p>When Amazon SageMaker receives the request, it sets the endpoint status to
54+
* <p>When SageMaker receives the request, it sets the endpoint status to
5555
* <code>Creating</code>. After it creates the endpoint, it sets the status to
56-
* <code>InService</code>. Amazon SageMaker can then process incoming requests for inferences. To
56+
* <code>InService</code>. SageMaker can then process incoming requests for inferences. To
5757
* check the status of an endpoint, use the <a>DescribeEndpoint</a>
5858
* API.</p>
5959
* <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
60-
* Amazon SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you
60+
* SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you
6161
* provided. Amazon Web Services STS is activated in your IAM user account by default. If you previously
6262
* deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For
6363
* more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and

clients/client-sagemaker/src/commands/CreateEndpointConfigCommand.ts

+5-5
Original file line numberDiff line numberDiff line change
@@ -22,22 +22,22 @@ export interface CreateEndpointConfigCommandInput extends CreateEndpointConfigIn
2222
export interface CreateEndpointConfigCommandOutput extends CreateEndpointConfigOutput, __MetadataBearer {}
2323

2424
/**
25-
* <p>Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In
25+
* <p>Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In
2626
* the configuration, you identify one or more models, created using the
27-
* <code>CreateModel</code> API, to deploy and the resources that you want Amazon SageMaker to
27+
* <code>CreateModel</code> API, to deploy and the resources that you want SageMaker to
2828
* provision. Then you call the <a>CreateEndpoint</a> API.</p>
2929
* <note>
30-
* <p> Use this API if you want to use Amazon SageMaker hosting services to deploy models into
30+
* <p> Use this API if you want to use SageMaker hosting services to deploy models into
3131
* production. </p>
3232
* </note>
3333
* <p>In the request, you define a <code>ProductionVariant</code>, for each model that you
3434
* want to deploy. Each <code>ProductionVariant</code> parameter also describes the
35-
* resources that you want Amazon SageMaker to provision. This includes the number and type of ML
35+
* resources that you want SageMaker to provision. This includes the number and type of ML
3636
* compute instances to deploy. </p>
3737
* <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to
3838
* specify how much traffic you want to allocate to each model. For example, suppose that
3939
* you want to host two models, A and B, and you assign traffic weight 2 for model A and 1
40-
* for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to
40+
* for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to
4141
* model B. </p>
4242
* <note>
4343
* <p>When you call <a>CreateEndpoint</a>, a load call is made to DynamoDB to

clients/client-sagemaker/src/commands/CreateImageCommand.ts

+1-1
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ export interface CreateImageCommandOutput extends CreateImageResponse, __Metadat
2323

2424
/**
2525
* <p>Creates a custom SageMaker image. A SageMaker image is a set of image versions. Each image
26-
* version represents a container image stored in Amazon Container Registry (ECR). For more information, see
26+
* version represents a container image stored in Amazon Elastic Container Registry (ECR). For more information, see
2727
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html">Bring your own SageMaker image</a>.</p>
2828
* @example
2929
* Use a bare-bones client and the command you need to make an API call.

clients/client-sagemaker/src/commands/CreateImageVersionCommand.ts

+3-2
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,8 @@ import {
1111
SerdeContext as __SerdeContext,
1212
} from "@aws-sdk/types";
1313

14-
import { CreateImageVersionRequest, CreateImageVersionResponse } from "../models/models_0";
14+
import { CreateImageVersionRequest } from "../models/models_0";
15+
import { CreateImageVersionResponse } from "../models/models_1";
1516
import {
1617
deserializeAws_json1_1CreateImageVersionCommand,
1718
serializeAws_json1_1CreateImageVersionCommand,
@@ -23,7 +24,7 @@ export interface CreateImageVersionCommandOutput extends CreateImageVersionRespo
2324

2425
/**
2526
* <p>Creates a version of the SageMaker image specified by <code>ImageName</code>. The version
26-
* represents the Amazon Container Registry (ECR) container image specified by <code>BaseImage</code>.</p>
27+
* represents the Amazon Elastic Container Registry (ECR) container image specified by <code>BaseImage</code>.</p>
2728
* @example
2829
* Use a bare-bones client and the command you need to make an API call.
2930
* ```javascript

clients/client-sagemaker/src/commands/CreateModelCommand.ts

+6-8
Original file line numberDiff line numberDiff line change
@@ -22,27 +22,25 @@ export interface CreateModelCommandInput extends CreateModelInput {}
2222
export interface CreateModelCommandOutput extends CreateModelOutput, __MetadataBearer {}
2323

2424
/**
25-
* <p>Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary
25+
* <p>Creates a model in SageMaker. In the request, you name the model and describe a primary
2626
* container. For the primary container, you specify the Docker image that
2727
* contains inference code, artifacts (from prior training), and a custom environment map
2828
* that the inference code uses when you deploy the model for predictions.</p>
29-
* <p>Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch
29+
* <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch
3030
* transform job.</p>
3131
* <p>To host your model, you create an endpoint configuration with the
3232
* <code>CreateEndpointConfig</code> API, and then create an endpoint with the
33-
* <code>CreateEndpoint</code> API. Amazon SageMaker then deploys all of the containers that you
33+
* <code>CreateEndpoint</code> API. SageMaker then deploys all of the containers that you
3434
* defined for the model in the hosting environment. </p>
35-
* <p>For an example that calls this method when deploying a model to Amazon SageMaker hosting services,
35+
* <p>For an example that calls this method when deploying a model to SageMaker hosting services,
3636
* see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html#ex1-deploy-model-boto">Deploy the
3737
* Model to Amazon SageMaker Hosting Services (Amazon Web Services SDK for Python (Boto
3838
* 3)).</a>
3939
* </p>
4040
* <p>To run a batch transform using your model, you start a job with the
41-
* <code>CreateTransformJob</code> API. Amazon SageMaker uses your model and your dataset to get
41+
* <code>CreateTransformJob</code> API. SageMaker uses your model and your dataset to get
4242
* inferences which are then saved to a specified S3 location.</p>
43-
* <p>In the <code>CreateModel</code> request, you must define a container with the
44-
* <code>PrimaryContainer</code> parameter.</p>
45-
* <p>In the request, you also provide an IAM role that Amazon SageMaker can assume to access model
43+
* <p>In the request, you also provide an IAM role that SageMaker can assume to access model
4644
* artifacts and docker image for deployment on ML compute hosting instances or for batch
4745
* transform jobs. In addition, you also use the IAM role to manage permissions the
4846
* inference code needs. For example, if the inference code access any other Amazon Web Services resources,

clients/client-sagemaker/src/commands/CreateModelPackageCommand.ts

+4-4
Original file line numberDiff line numberDiff line change
@@ -22,14 +22,14 @@ export interface CreateModelPackageCommandInput extends CreateModelPackageInput
2222
export interface CreateModelPackageCommandOutput extends CreateModelPackageOutput, __MetadataBearer {}
2323

2424
/**
25-
* <p>Creates a model package that you can use to create Amazon SageMaker models or list on Amazon Web Services
25+
* <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services
2626
* Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to
27-
* model packages listed on Amazon Web Services Marketplace to create models in Amazon SageMaker.</p>
27+
* model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
2828
* <p>To create a model package by specifying a Docker container that contains your
2929
* inference code and the Amazon S3 location of your model artifacts, provide values for
30-
* <code>InferenceSpecification</code>. To create a model from an algorithm resource
30+
* <code>InferenceSpecification</code>. To create a model from an algorithm resource
3131
* that you created or subscribed to in Amazon Web Services Marketplace, provide a value for
32-
* <code>SourceAlgorithmSpecification</code>.</p>
32+
* <code>SourceAlgorithmSpecification</code>.</p>
3333
* <note>
3434
* <p>There are two types of model packages:</p>
3535
* <ul>

clients/client-sagemaker/src/commands/CreateNotebookInstanceCommand.ts

+13-13
Original file line numberDiff line numberDiff line change
@@ -22,41 +22,41 @@ export interface CreateNotebookInstanceCommandInput extends CreateNotebookInstan
2222
export interface CreateNotebookInstanceCommandOutput extends CreateNotebookInstanceOutput, __MetadataBearer {}
2323

2424
/**
25-
* <p>Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML)
25+
* <p>Creates an SageMaker notebook instance. A notebook instance is a machine learning (ML)
2626
* compute instance running on a Jupyter notebook. </p>
2727
* <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute
28-
* instance that you want to run. Amazon SageMaker launches the instance, installs common libraries
28+
* instance that you want to run. SageMaker launches the instance, installs common libraries
2929
* that you can use to explore datasets for model training, and attaches an ML storage
3030
* volume to the notebook instance. </p>
31-
* <p>Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to
32-
* use Amazon SageMaker with a specific algorithm or with a machine learning framework. </p>
33-
* <p>After receiving the request, Amazon SageMaker does the following:</p>
31+
* <p>SageMaker also provides a set of example notebooks. Each notebook demonstrates how to
32+
* use SageMaker with a specific algorithm or with a machine learning framework. </p>
33+
* <p>After receiving the request, SageMaker does the following:</p>
3434
* <ol>
3535
* <li>
36-
* <p>Creates a network interface in the Amazon SageMaker VPC.</p>
36+
* <p>Creates a network interface in the SageMaker VPC.</p>
3737
* </li>
3838
* <li>
39-
* <p>(Option) If you specified <code>SubnetId</code>, Amazon SageMaker creates a network
39+
* <p>(Option) If you specified <code>SubnetId</code>, SageMaker creates a network
4040
* interface in your own VPC, which is inferred from the subnet ID that you provide
41-
* in the input. When creating this network interface, Amazon SageMaker attaches the security
41+
* in the input. When creating this network interface, SageMaker attaches the security
4242
* group that you specified in the request to the network interface that it creates
4343
* in your VPC.</p>
4444
*
4545
* </li>
4646
* <li>
47-
* <p>Launches an EC2 instance of the type specified in the request in the Amazon SageMaker
48-
* VPC. If you specified <code>SubnetId</code> of your VPC, Amazon SageMaker specifies both
47+
* <p>Launches an EC2 instance of the type specified in the request in the SageMaker
48+
* VPC. If you specified <code>SubnetId</code> of your VPC, SageMaker specifies both
4949
* network interfaces when launching this instance. This enables inbound traffic
5050
* from your own VPC to the notebook instance, assuming that the security groups
5151
* allow it.</p>
5252
* </li>
5353
* </ol>
5454
*
55-
* <p>After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN).
55+
* <p>After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN).
5656
* You can't change the name of a notebook instance after you create it.</p>
57-
* <p>After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and
57+
* <p>After SageMaker creates the notebook instance, you can connect to the Jupyter server and
5858
* work in Jupyter notebooks. For example, you can write code to explore a dataset that you
59-
* can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and
59+
* can use for model training, train a model, host models by creating SageMaker endpoints, and
6060
* validate hosted models. </p>
6161
* <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
6262
* @example

0 commit comments

Comments
 (0)