|
| 1 | +import argparse |
| 2 | +import numpy as np |
| 3 | +import os |
| 4 | +import tensorflow as tf |
| 5 | + |
| 6 | +from model_def import get_model |
| 7 | + |
| 8 | +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
| 9 | + |
| 10 | + |
| 11 | +def parse_args(): |
| 12 | + |
| 13 | + parser = argparse.ArgumentParser() |
| 14 | + |
| 15 | + # hyperparameters sent by the client are passed as command-line arguments to the script |
| 16 | + parser.add_argument('--epochs', type=int, default=1) |
| 17 | + parser.add_argument('--batch_size', type=int, default=64) |
| 18 | + parser.add_argument('--learning_rate', type=float, default=0.1) |
| 19 | + |
| 20 | + # data directories |
| 21 | + parser.add_argument('--train', type=str, default=os.environ.get('SM_CHANNEL_TRAIN')) |
| 22 | + parser.add_argument('--test', type=str, default=os.environ.get('SM_CHANNEL_TEST')) |
| 23 | + |
| 24 | + # model directory |
| 25 | + parser.add_argument('--sm-model-dir', type=str, default=os.environ.get('SM_MODEL_DIR')) |
| 26 | + |
| 27 | + return parser.parse_known_args() |
| 28 | + |
| 29 | + |
| 30 | +def get_train_data(train_dir): |
| 31 | + |
| 32 | + x_train = np.load(os.path.join(train_dir, 'x_train.npy')) |
| 33 | + y_train = np.load(os.path.join(train_dir, 'y_train.npy')) |
| 34 | + print('x train', x_train.shape,'y train', y_train.shape) |
| 35 | + |
| 36 | + return x_train, y_train |
| 37 | + |
| 38 | + |
| 39 | +def get_test_data(test_dir): |
| 40 | + |
| 41 | + x_test = np.load(os.path.join(test_dir, 'x_test.npy')) |
| 42 | + y_test = np.load(os.path.join(test_dir, 'y_test.npy')) |
| 43 | + print('x test', x_test.shape,'y test', y_test.shape) |
| 44 | + |
| 45 | + return x_test, y_test |
| 46 | + |
| 47 | + |
| 48 | +if __name__ == "__main__": |
| 49 | + |
| 50 | + args, _ = parse_args() |
| 51 | + |
| 52 | + print('Training data location: {}'.format(args.train)) |
| 53 | + print('Test data location: {}'.format(args.test)) |
| 54 | + x_train, y_train = get_train_data(args.train) |
| 55 | + x_test, y_test = get_test_data(args.test) |
| 56 | + |
| 57 | + device = '/cpu:0' |
| 58 | + print(device) |
| 59 | + batch_size = args.batch_size |
| 60 | + epochs = args.epochs |
| 61 | + learning_rate = args.learning_rate |
| 62 | + print('batch_size = {}, epochs = {}, learning rate = {}'.format(batch_size, epochs, learning_rate)) |
| 63 | + |
| 64 | + with tf.device(device): |
| 65 | + |
| 66 | + model = get_model() |
| 67 | + optimizer = tf.keras.optimizers.SGD(learning_rate) |
| 68 | + model.compile(optimizer=optimizer, loss='mse') |
| 69 | + model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, |
| 70 | + validation_data=(x_test, y_test)) |
| 71 | + |
| 72 | + # evaluate on test set |
| 73 | + scores = model.evaluate(x_test, y_test, batch_size, verbose=2) |
| 74 | + print("\nTest MSE :", scores) |
| 75 | + |
| 76 | + # save model |
| 77 | + model.save(args.sm_model_dir + '/1') |
| 78 | + |
| 79 | + |
0 commit comments