-
Notifications
You must be signed in to change notification settings - Fork 421
/
Copy pathtest_metrics_datadog.py
561 lines (402 loc) · 20.2 KB
/
test_metrics_datadog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
from __future__ import annotations
import json
import warnings
from collections import namedtuple
import pytest
from aws_lambda_powertools.metrics.exceptions import MetricValueError, SchemaValidationError
from aws_lambda_powertools.metrics.provider.cold_start import reset_cold_start_flag
from aws_lambda_powertools.metrics.provider.datadog import DatadogMetrics, DatadogProvider
def test_datadog_coldstart(capsys):
reset_cold_start_flag()
# GIVEN DatadogMetrics is initialized
dd_provider = DatadogProvider(flush_to_log=True)
metrics = DatadogMetrics(provider=dd_provider)
LambdaContext = namedtuple("LambdaContext", "function_name")
# WHEN log_metrics is used with capture_cold_start_metric
@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler(event, context):
metrics.add_metric(name="item_sold", value=1, product="latte", order="online")
lambda_handler({}, LambdaContext("example_fn2"))
logs = capsys.readouterr().out.strip()
# THEN ColdStart metric and function_name and service dimension should be logged
assert "ColdStart" in logs
assert "example_fn2" in logs
def test_datadog_coldstart_with_constructor_parameter(capsys):
reset_cold_start_flag()
# GIVEN DatadogMetrics is initialized
# AND DatadogMetrics is initialized with an explicit function_name parameter
dd_provider = DatadogProvider(flush_to_log=True, function_name="example_fn_constructor")
metrics = DatadogMetrics(provider=dd_provider)
LambdaContext = namedtuple("LambdaContext", "function_name")
# WHEN log_metrics is used with capture_cold_start_metric
@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler(event, context):
metrics.add_metric(name="item_sold", value=1, product="latte", order="online")
lambda_handler({}, LambdaContext("example_fn2"))
logs = capsys.readouterr().out.strip()
# THEN ColdStart metric and function_name and service dimension should be logged
# THEN use the constructor-provided function_name (highest priority)
assert "ColdStart" in logs
assert "example_fn_constructor" in logs
def test_datadog_coldstart_with_env_var(monkeypatch, capsys):
reset_cold_start_flag()
# GIVEN DatadogMetrics is initialized
# AND DatadogMetrics is initialized with an env var
monkeypatch.setenv("POWERTOOLS_METRICS_FUNCTION_NAME", "example_fn_env_var")
dd_provider = DatadogProvider(flush_to_log=True)
metrics = DatadogMetrics(provider=dd_provider)
LambdaContext = namedtuple("LambdaContext", "function_name")
# WHEN log_metrics is used with capture_cold_start_metric
@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler(event, context):
metrics.add_metric(name="item_sold", value=1, product="latte", order="online")
lambda_handler({}, LambdaContext("example_fn2"))
logs = capsys.readouterr().out.strip()
# THEN ColdStart metric and function_name and service dimension should be logged
# THEN use the env var function_name (second priority)
assert "ColdStart" in logs
assert "example_fn_env_var" in logs
def test_datadog_write_to_log_with_env_variable(capsys, monkeypatch):
# GIVEN DD_FLUSH_TO_LOG env is configured
monkeypatch.setenv("DD_FLUSH_TO_LOG", "True")
metrics = DatadogMetrics()
# WHEN we add a metric
metrics.add_metric(name="item_sold", value=1, product="latte", order="online")
metrics.flush_metrics()
logs = json.loads(capsys.readouterr().out.strip())
# THEN metrics is flushed to log
logs["e"] = ""
assert logs == json.loads('{"m":"item_sold","v":1,"e":"","t":["product:latte","order:online"]}')
def test_datadog_disable_write_to_log_with_env_variable(capsys, monkeypatch):
# GIVEN DD_FLUSH_TO_LOG env is configured
monkeypatch.setenv("DD_FLUSH_TO_LOG", "False")
metrics = DatadogMetrics()
# WHEN we add a metric
metrics.add_metric(name="item_sold", value=1, product="latte", order="online")
metrics.flush_metrics()
logs = capsys.readouterr().out.strip()
# THEN metrics is not flushed
assert not logs
def test_datadog_with_invalid_metric_value():
# GIVEN DatadogMetrics is initialized
metrics = DatadogMetrics()
# WHEN we pass an incorrect metric value (non-numeric)
# WHEN we attempt to serialize a valid Datadog metric
# THEN it should fail validation and raise MetricValueError
with pytest.raises(MetricValueError, match=".*is not a valid number"):
metrics.add_metric(name="item_sold", value="a", product="latte", order="online")
def test_datadog_with_invalid_metric_name():
# GIVEN DatadogMetrics is initialized
metrics = DatadogMetrics()
# WHEN we a metric name starting with a number
# WHEN we attempt to serialize a valid Datadog metric
# THEN it should fail validation and raise MetricValueError
with pytest.raises(SchemaValidationError, match="Invalid metric name.*"):
metrics.add_metric(name="1_item_sold", value="a", product="latte", order="online")
def test_datadog_raise_on_empty():
# GIVEN DatadogMetrics is initialized
metrics = DatadogMetrics()
LambdaContext = namedtuple("LambdaContext", "function_name")
# WHEN we set raise_on_empty_metrics to True
@metrics.log_metrics(raise_on_empty_metrics=True)
def lambda_handler(event, context):
pass
# THEN it should fail with no metric serialized
with pytest.raises(SchemaValidationError, match="Must contain at least one metric."):
lambda_handler({}, LambdaContext("example_fn"))
def test_datadog_tags_using_kwargs(capsys):
# GIVEN DatadogMetrics is initialized
metrics = DatadogMetrics(flush_to_log=True)
# WHEN we add tags using kwargs
metrics.add_metric("order_valve", 12.45, sales="sam")
metrics.flush_metrics()
logs = capsys.readouterr().out.strip()
log_dict = json.loads(logs)
tag_list = log_dict.get("t")
# THEN tags must be present
assert "sales:sam" in tag_list
def test_metrics_clear_metrics_after_invocation(metric_datadog):
# GIVEN DatadogMetrics is initialized
my_metrics = DatadogMetrics(flush_to_log=True)
my_metrics.add_metric(**metric_datadog)
# WHEN log_metrics is used to flush metrics from memory
@my_metrics.log_metrics
def lambda_handler(evt, context):
pass
lambda_handler({}, {})
# THEN metric set should be empty after function has been run
assert my_metrics.metric_set == []
def test_metrics_decorator_with_metrics_warning():
# GIVEN DatadogMetrics is initialized
my_metrics = DatadogMetrics(flush_to_log=True)
# WHEN using the log_metrics decorator and no metrics have been added
@my_metrics.log_metrics
def lambda_handler(evt, context):
pass
# THEN it should raise a warning instead of throwing an exception
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("default")
lambda_handler({}, {})
assert len(w) == 1
assert str(w[-1].message) == (
"No application metrics to publish. The cold-start metric may be published if enabled. "
"If application metrics should never be empty, consider using 'raise_on_empty_metrics'"
)
def test_datadog_log_metrics_decorator_with_additional_handler_args():
# GIVEN DatadogMetrics is initialized
my_metrics = DatadogMetrics(flush_to_log=True)
# WHEN log_metrics is used to serialize metrics
# AND the wrapped function uses additional parameters
@my_metrics.log_metrics
def lambda_handler(evt, context, additional_arg, additional_kw_arg="default_value"):
return additional_arg, additional_kw_arg
# THEN the decorator should not raise any errors when
# the wrapped function is passed additional arguments
assert lambda_handler({}, {}, "arg_value", additional_kw_arg="kw_arg_value") == ("arg_value", "kw_arg_value")
assert lambda_handler({}, {}, "arg_value") == ("arg_value", "default_value")
def test_metrics_with_default_namespace(capsys, namespace):
# GIVEN DatadogMetrics is initialized with default namespace
metrics = DatadogMetrics(flush_to_log=True)
LambdaContext = namedtuple("LambdaContext", "function_name")
# WHEN we add metrics
@metrics.log_metrics
def lambda_handler(event, context):
metrics.add_metric(name="item_sold", value=1, product="latte", order="online")
lambda_handler({}, LambdaContext("example_fn2"))
logs = capsys.readouterr().out.strip()
# THEN default namespace must be assumed
assert namespace not in logs
def test_datadog_with_non_default_namespace(capsys, namespace):
# GIVEN DatadogMetrics is initialized with a non-default namespace
metrics = DatadogMetrics(namespace=namespace, flush_to_log=True)
LambdaContext = namedtuple("LambdaContext", "function_name")
# WHEN log_metrics is used
@metrics.log_metrics
def lambda_handler(event, context):
metrics.add_metric(name="item_sold", value=1, product="latte", order="online")
lambda_handler({}, LambdaContext("example_fn"))
logs = capsys.readouterr().out.strip()
# THEN namespace must be present in logs
assert namespace in logs
def test_serialize_metrics(metric_datadog):
# GIVEN DatadogMetrics is initialized
my_metrics = DatadogMetrics(flush_to_log=True)
my_metrics.add_metric(**metric_datadog)
# WHEN we serialize metrics
my_metrics.serialize_metric_set()
# THEN metric set should be empty after function has been run
assert my_metrics.metric_set[0]["m"] == "single_metric"
def test_clear_metrics(metric):
# GIVEN DatadogMetrics is initialized
my_metrics = DatadogMetrics(flush_to_log=True)
my_metrics.add_metric(**metric)
my_metrics.clear_metrics()
# THEN metric set should be empty after function has been run
assert my_metrics.metric_set == []
def test_persist_default_tags(capsys):
# GIVEN DatadogMetrics is initialized and we persist a set of default tags
my_metrics = DatadogMetrics(flush_to_log=True)
my_metrics.set_default_tags(environment="test", log_group="/lambda/test")
# WHEN we utilize log_metrics to serialize
# and flush metrics and clear all metrics and tags from memory
# at the end of a function execution
@my_metrics.log_metrics
def lambda_handler(evt, ctx):
my_metrics.add_metric(name="item_sold", value=1)
lambda_handler({}, {})
first_invocation = capsys.readouterr().out.strip()
lambda_handler({}, {})
second_invocation = capsys.readouterr().out.strip()
# THEN we should have default tags in both outputs
assert "environment" in first_invocation
assert "environment" in second_invocation
def test_log_metrics_with_default_tags(capsys):
# GIVEN DatadogMetrics is initialized and we persist a set of default tags
my_metrics = DatadogMetrics(flush_to_log=True)
default_tags = {"environment": "test", "log_group": "/lambda/test"}
# WHEN we utilize log_metrics with default dimensions to serialize
# and flush metrics and clear all metrics and tags from memory
# at the end of a function execution
@my_metrics.log_metrics(default_tags=default_tags)
def lambda_handler(evt, ctx):
my_metrics.add_metric(name="item_sold", value=1)
lambda_handler({}, {})
first_invocation = capsys.readouterr().out.strip()
lambda_handler({}, {})
second_invocation = capsys.readouterr().out.strip()
# THEN we should have default tags in both outputs
assert "environment" in first_invocation
assert "environment" in second_invocation
def test_log_metrics_precedence_metrics_tags_over_default_tags(capsys):
# GIVEN DatadogMetrics is initialized and we persist a set of default tags
my_metrics = DatadogMetrics(flush_to_log=True)
default_tags = {"environment": "test", "log_group": "/lambda/test"}
# WHEN we use log_metrics with default_tags to serialize
# and create metrics with a tag that has the same name as one of the default_tags
@my_metrics.log_metrics(default_tags=default_tags)
def lambda_handler(evt, ctx):
my_metrics.add_metric(name="item_sold", value=1, environment="metric_precedence")
lambda_handler({}, {})
output = json.loads(capsys.readouterr().out.strip())
# THEN tag defined in add_metric must have preference over default_tags
assert "environment:metric_precedence" in output["t"]
assert "environment:test" not in output["t"]
def test_log_metrics_merge_metrics_tags_and_default_tags(capsys):
# GIVEN DatadogMetrics is initialized and we persist a set of default tags
my_metrics = DatadogMetrics(flush_to_log=True)
default_tags = {"environment": "test", "log_group": "/lambda/test"}
# WHEN we use log_metrics with default_tags to serialize
# and create metrics with a tag that has the same name as one of the default_tags
@my_metrics.log_metrics(default_tags=default_tags)
def lambda_handler(evt, ctx):
my_metrics.add_metric(name="item_sold", value=1, product="powertools")
lambda_handler({}, {})
output = json.loads(capsys.readouterr().out.strip())
# THEN there should be serialized default_tags and metric tags
output["e"] = ""
assert output == json.loads(
'{"m":"item_sold","v":1,"e":"","t":["environment:test","log_group:/lambda/test", "product:powertools"]}',
)
def test_clear_default_tags():
# GIVEN DatadogMetrics is initialized and we persist a set of default tags
my_metrics = DatadogMetrics()
my_metrics.set_default_tags(environment="test", log_group="/lambda/test")
# WHEN they are removed via clear_default_tags method
my_metrics.clear_default_tags()
# THEN there should be no default tags
assert not my_metrics.default_tags
def test_namespace_var_precedence(monkeypatch, namespace):
# GIVEN we use POWERTOOLS_METRICS_NAMESPACE
monkeypatch.setenv("POWERTOOLS_METRICS_NAMESPACE", "a_namespace")
my_metrics = DatadogMetrics(namespace=namespace, flush_to_log=True)
# WHEN creating a metric and explicitly set a namespace
my_metrics.add_metric(name="item_sold", value=1)
output = my_metrics.serialize_metric_set()
# THEN namespace should match the explicitly passed variable and not the env var
assert output[0]["m"] == f"{namespace}.item_sold"
def test_namespace_env_var(monkeypatch):
# GIVEN POWERTOOLS_METRICS_NAMESPACE is set
env_namespace = "a_namespace"
monkeypatch.setenv("POWERTOOLS_METRICS_NAMESPACE", env_namespace)
my_metrics = DatadogMetrics(flush_to_log=True)
# WHEN creating a metric and explicitly set a namespace
my_metrics.add_metric(name="item_sold", value=1)
output = my_metrics.serialize_metric_set()
# THEN namespace should match the explicitly passed variable and not the env var
assert output[0]["m"] == f"{env_namespace}.item_sold"
def test_metrics_disabled_with_env_var(monkeypatch, capsys):
# GIVEN environment variable is set to disable metrics
monkeypatch.setenv("POWERTOOLS_METRICS_DISABLED", "true")
# WHEN metrics is initialized and adding metrics
metrics = DatadogMetrics()
metrics.add_metric(name="test_metric", value=1)
metrics.flush_metrics()
# THEN no metrics should have been recorded
captured = capsys.readouterr()
assert not captured.out
def test_metrics_disabled_persists_after_flush(monkeypatch, capsys):
# GIVEN environment variable is set to disable metrics
monkeypatch.setenv("POWERTOOLS_METRICS_DISABLED", "true")
metrics = DatadogMetrics()
# WHEN multiple operations are performed with flush in between
metrics.add_metric(name="metric1", value=1)
metrics.flush_metrics()
# THEN first flush should not emit any metrics
captured = capsys.readouterr()
assert not captured.out
# WHEN adding and flushing more metrics
metrics.add_metric(name="metric2", value=2)
metrics.flush_metrics()
# THEN second flush should also not emit any metrics
captured = capsys.readouterr()
assert not captured.out
def test_metrics_disabled_with_namespace(monkeypatch, capsys):
# GIVEN environment variable is set to disable metrics
monkeypatch.setenv("POWERTOOLS_METRICS_DISABLED", "true")
# WHEN metrics is initialized with namespace and service
metrics = DatadogMetrics(namespace="test_namespace")
metrics.add_metric(name="test_metric", value=1)
metrics.flush_metrics()
# THEN no metrics should have been recorded
captured = capsys.readouterr()
assert not captured.out
def test_metrics_disabled_with_dev_mode_true(monkeypatch, capsys):
# GIVEN dev mode is enabled
monkeypatch.setenv("POWERTOOLS_DEV", "true")
# WHEN metrics is initialized
metrics = DatadogMetrics(namespace="test")
metrics.add_metric(name="test_metric", value=1)
metrics.flush_metrics()
# THEN no metrics should have been recorded
captured = capsys.readouterr()
assert not captured.out
def test_metrics_enabled_with_env_var_false(monkeypatch, capsys):
# GIVEN environment variable is set to enable metrics
monkeypatch.setenv("POWERTOOLS_METRICS_DISABLED", "false")
# WHEN metrics is initialized with namespace and metrics added
metrics = DatadogMetrics(namespace="test", flush_to_log=True)
metrics.add_metric(name="test_metric", value=1)
metrics.flush_metrics()
# THEN Datadog metrics should be written to stdout
output = capsys.readouterr().out
metrics_output = json.loads(output)
assert metrics_output
def test_metrics_enabled_with_env_var_not_set(monkeypatch, capsys):
# GIVEN environment variable is not set
monkeypatch.delenv("POWERTOOLS_METRICS_DISABLED", raising=False)
# WHEN metrics is initialized with namespace and metrics added
metrics = DatadogMetrics(namespace="test", flush_to_log=True)
metrics.add_metric(name="test_metric", value=1)
metrics.flush_metrics()
# THEN metrics should be written to stdout
output = capsys.readouterr().out
metrics_output = json.loads(output)
assert "test.test_metric" in metrics_output["m"]
def test_metrics_enabled_with_dev_mode_false(monkeypatch, capsys):
# GIVEN dev mode is disabled
monkeypatch.setenv("POWERTOOLS_DEV", "false")
# WHEN metrics is initialized
metrics = DatadogMetrics(namespace="test", flush_to_log=True)
metrics.add_metric(name="test_metric", value=1)
metrics.flush_metrics()
# THEN metrics should be written to stdout
output = capsys.readouterr().out
metrics_output = json.loads(output)
assert metrics_output
def test_metrics_disabled_dev_mode_overrides_metrics_disabled(monkeypatch, capsys):
# GIVEN dev mode is enabled but metrics disabled is false
monkeypatch.setenv("POWERTOOLS_DEV", "true")
monkeypatch.setenv("POWERTOOLS_METRICS_DISABLED", "false")
# WHEN metrics is initialized
metrics = DatadogMetrics(namespace="test", flush_to_log=True)
metrics.add_metric(name="test_metric", value=1)
metrics.flush_metrics()
# THEN metrics should be written to stdout since POWERTOOLS_METRICS_DISABLED is false
output = capsys.readouterr().out
assert output # First verify we have output
metrics_output = json.loads(output)
assert metrics_output # Then verify it's valid JSON
assert "test.test_metric" in metrics_output["m"] # Verify the metric is present
def test_metrics_enabled_with_both_false(monkeypatch, capsys):
# GIVEN both dev mode and metrics disabled are false
monkeypatch.setenv("POWERTOOLS_DEV", "false")
monkeypatch.setenv("POWERTOOLS_METRICS_DISABLED", "false")
# WHEN metrics is initialized
metrics = DatadogMetrics(namespace="test", flush_to_log=True)
metrics.add_metric(name="test_metric", value=1)
metrics.flush_metrics()
# THEN metrics should be written to stdout
output = capsys.readouterr().out
metrics_output = json.loads(output)
assert metrics_output
def test_metrics_disabled_with_dev_mode_false_and_metrics_disabled_true(monkeypatch, capsys):
# GIVEN dev mode is false but metrics disabled is true
monkeypatch.setenv("POWERTOOLS_DEV", "false")
monkeypatch.setenv("POWERTOOLS_METRICS_DISABLED", "true")
# WHEN metrics is initialized
metrics = DatadogMetrics(namespace="test", flush_to_log=True)
metrics.add_metric(name="test_metric", value=1)
metrics.flush_metrics()
# THEN no metrics should have been recorded
captured = capsys.readouterr()
assert not captured.out