-
Notifications
You must be signed in to change notification settings - Fork 421
/
Copy pathtest_metrics_provider.py
80 lines (57 loc) · 2.76 KB
/
test_metrics_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from __future__ import annotations
import json
from typing import TYPE_CHECKING, Any
from aws_lambda_powertools.metrics import (
SchemaValidationError,
)
from aws_lambda_powertools.metrics.metrics import Metrics
from aws_lambda_powertools.metrics.provider import BaseProvider
if TYPE_CHECKING:
from aws_lambda_powertools.utilities.typing import LambdaContext
def capture_metrics_output(capsys):
return json.loads(capsys.readouterr().out.strip())
class FakeMetricsProvider(BaseProvider):
def __init__(self):
self.metric_store: list = []
def add_metric(self, name: str, value: float, tag: list = None, *args, **kwargs):
self.metric_store.append({"name": name, "value": value})
def serialize_metric_set(self, raise_on_empty_metrics: bool = False, *args, **kwargs):
if raise_on_empty_metrics and len(self.metric_store) == 0:
raise SchemaValidationError("Must contain at least one metric.")
self.result = json.dumps(self.metric_store)
def flush_metrics(self, *args, **kwargs):
print(json.dumps(self.metric_store))
def clear_metrics(self):
self.metric_store.clear()
def add_cold_start_metric(self, context: LambdaContext) -> Any:
self.metric_store.append({"name": "ColdStart", "value": 1, "function_name": context.function_name})
def test_metrics_class_with_custom_provider(capsys, metric):
provider = FakeMetricsProvider()
metrics = Metrics(provider=provider)
metrics.add_metric(**metric)
metrics.flush_metrics()
output = capture_metrics_output(capsys)
assert output[0]["name"] == metric["name"]
assert output[0]["value"] == metric["value"]
def test_metrics_provider_class_decorate():
# GIVEN Metrics is initialized
my_metrics = Metrics()
# WHEN log_metrics is used to serialize metrics
@my_metrics.log_metrics
def lambda_handler(evt, context):
return True
# THEN log_metrics should invoke the function it decorates
# and return no error if we have a namespace and dimension
assert lambda_handler({}, {}) is True
def test_metrics_provider_class_decorator_with_additional_handler_args():
# GIVEN Metrics is initialized
my_metrics = Metrics()
# WHEN log_metrics is used to serialize metrics
# AND the wrapped function uses additional parameters
@my_metrics.log_metrics
def lambda_handler(evt, context, additional_arg, additional_kw_arg="default_value"):
return additional_arg, additional_kw_arg
# THEN the decorator should not raise any errors when
# the wrapped function is passed additional arguments
assert lambda_handler({}, {}, "arg_value", additional_kw_arg="kw_arg_value") == ("arg_value", "kw_arg_value")
assert lambda_handler({}, {}, "arg_value") == ("arg_value", "default_value")