-
Notifications
You must be signed in to change notification settings - Fork 421
/
Copy pathcloudwatch.py
478 lines (390 loc) · 17.8 KB
/
cloudwatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from __future__ import annotations
import datetime
import json
import logging
import numbers
import os
import warnings
from collections import defaultdict
from typing import TYPE_CHECKING, Any
from aws_lambda_powertools.metrics.base import single_metric
from aws_lambda_powertools.metrics.exceptions import MetricValueError, SchemaValidationError
from aws_lambda_powertools.metrics.functions import (
convert_timestamp_to_emf_format,
extract_cloudwatch_metric_resolution_value,
extract_cloudwatch_metric_unit_value,
is_metrics_disabled,
validate_emf_timestamp,
)
from aws_lambda_powertools.metrics.provider.base import BaseProvider
from aws_lambda_powertools.metrics.provider.cloudwatch_emf.constants import MAX_DIMENSIONS, MAX_METRICS
from aws_lambda_powertools.metrics.provider.cloudwatch_emf.metric_properties import MetricResolution, MetricUnit
from aws_lambda_powertools.shared import constants
from aws_lambda_powertools.shared.functions import resolve_env_var_choice
from aws_lambda_powertools.warnings import PowertoolsUserWarning
if TYPE_CHECKING:
from aws_lambda_powertools.metrics.provider.cloudwatch_emf.types import CloudWatchEMFOutput
from aws_lambda_powertools.metrics.types import MetricNameUnitResolution
from aws_lambda_powertools.shared.types import AnyCallableT
from aws_lambda_powertools.utilities.typing import LambdaContext
logger = logging.getLogger(__name__)
class AmazonCloudWatchEMFProvider(BaseProvider):
"""
AmazonCloudWatchEMFProvider creates metrics asynchronously via CloudWatch Embedded Metric Format (EMF).
CloudWatch EMF can create up to 100 metrics per EMF object
and metrics, dimensions, and namespace created via AmazonCloudWatchEMFProvider
will adhere to the schema, will be serialized and validated against EMF Schema.
**Use `aws_lambda_powertools.Metrics` or
`aws_lambda_powertools.single_metric` to create EMF metrics.**
Environment variables
---------------------
POWERTOOLS_METRICS_NAMESPACE : str
metric namespace to be set for all metrics
POWERTOOLS_SERVICE_NAME : str
service name used for default dimension
Raises
------
MetricUnitError
When metric unit isn't supported by CloudWatch
MetricResolutionError
When metric resolution isn't supported by CloudWatch
MetricValueError
When metric value isn't a number
SchemaValidationError
When metric object fails EMF schema validation
"""
def __init__(
self,
metric_set: dict[str, Any] | None = None,
dimension_set: dict | None = None,
namespace: str | None = None,
metadata_set: dict[str, Any] | None = None,
service: str | None = None,
default_dimensions: dict[str, Any] | None = None,
):
self.metric_set = metric_set if metric_set is not None else {}
self.dimension_set = dimension_set if dimension_set is not None else {}
self.default_dimensions = default_dimensions or {}
self.namespace = resolve_env_var_choice(choice=namespace, env=os.getenv(constants.METRICS_NAMESPACE_ENV))
self.service = resolve_env_var_choice(choice=service, env=os.getenv(constants.SERVICE_NAME_ENV))
self.metadata_set = metadata_set if metadata_set is not None else {}
self.timestamp: int | None = None
self._metric_units = [unit.value for unit in MetricUnit]
self._metric_unit_valid_options = list(MetricUnit.__members__)
self._metric_resolutions = [resolution.value for resolution in MetricResolution]
self.dimension_set.update(**self.default_dimensions)
def add_metric(
self,
name: str,
unit: MetricUnit | str,
value: float,
resolution: MetricResolution | int = 60,
) -> None:
"""Adds given metric
Example
-------
**Add given metric using MetricUnit enum**
metric.add_metric(name="BookingConfirmation", unit=MetricUnit.Count, value=1)
**Add given metric using plain string as value unit**
metric.add_metric(name="BookingConfirmation", unit="Count", value=1)
**Add given metric with MetricResolution non default value**
metric.add_metric(name="BookingConfirmation", unit="Count", value=1, resolution=MetricResolution.High)
Parameters
----------
name : str
Metric name
unit : MetricUnit | str
`aws_lambda_powertools.helper.models.MetricUnit`
value : float
Metric value
resolution : MetricResolution | int
`aws_lambda_powertools.helper.models.MetricResolution`
Raises
------
MetricUnitError
When metric unit is not supported by CloudWatch
MetricResolutionError
When metric resolution is not supported by CloudWatch
"""
if not isinstance(value, numbers.Number):
raise MetricValueError(f"{value} is not a valid number")
unit = extract_cloudwatch_metric_unit_value(
metric_units=self._metric_units,
metric_valid_options=self._metric_unit_valid_options,
unit=unit,
)
resolution = extract_cloudwatch_metric_resolution_value(
metric_resolutions=self._metric_resolutions,
resolution=resolution,
)
metric: dict = self.metric_set.get(name, defaultdict(list))
metric["Unit"] = unit
metric["StorageResolution"] = resolution
metric["Value"].append(float(value))
logger.debug(f"Adding metric: {name} with {metric}")
self.metric_set[name] = metric
if len(self.metric_set) == MAX_METRICS or len(metric["Value"]) == MAX_METRICS:
logger.debug(f"Exceeded maximum of {MAX_METRICS} metrics - Publishing existing metric set")
metrics = self.serialize_metric_set()
print(json.dumps(metrics))
# clear metric set only as opposed to metrics and dimensions set
# since we could have more than 100 metrics
self.metric_set.clear()
def serialize_metric_set(
self,
metrics: dict | None = None,
dimensions: dict | None = None,
metadata: dict | None = None,
) -> CloudWatchEMFOutput:
"""Serializes metric and dimensions set
Parameters
----------
metrics : dict, optional
Dictionary of metrics to serialize, by default None
dimensions : dict, optional
Dictionary of dimensions to serialize, by default None
metadata: dict, optional
Dictionary of metadata to serialize, by default None
Example
-------
**Serialize metrics into EMF format**
metrics = MetricManager()
# ...add metrics, dimensions, namespace
ret = metrics.serialize_metric_set()
Returns
-------
CloudWatchEMFOutput
Serialized metrics following EMF specification
Raises
------
SchemaValidationError
Raised when serialization fail schema validation
"""
if metrics is None: # pragma: no cover
metrics = self.metric_set
if dimensions is None: # pragma: no cover
dimensions = self.dimension_set
if metadata is None: # pragma: no cover
metadata = self.metadata_set
if self.service and not self.dimension_set.get("service"):
# self.service won't be a float
self.add_dimension(name="service", value=self.service)
if len(metrics) == 0:
raise SchemaValidationError("Must contain at least one metric.")
if self.namespace is None:
raise SchemaValidationError("Must contain a metric namespace.")
logger.debug({"details": "Serializing metrics", "metrics": metrics, "dimensions": dimensions})
# For standard resolution metrics, don't add StorageResolution field to avoid unnecessary ingestion of data into cloudwatch # noqa E501
# Example: [ { "Name": "metric_name", "Unit": "Count"} ] # noqa ERA001
#
# In case using high-resolution metrics, add StorageResolution field
# Example: [ { "Name": "metric_name", "Unit": "Count", "StorageResolution": 1 } ] # noqa ERA001
metric_definition: list[MetricNameUnitResolution] = []
metric_names_and_values: dict[str, float] = {} # { "metric_name": 1.0 }
for metric_name in metrics:
metric: dict = metrics[metric_name]
metric_value: int = metric.get("Value", 0)
metric_unit: str = metric.get("Unit", "")
metric_resolution: int = metric.get("StorageResolution", 60)
metric_definition_data: MetricNameUnitResolution = {"Name": metric_name, "Unit": metric_unit}
# high-resolution metrics
if metric_resolution == 1:
metric_definition_data["StorageResolution"] = metric_resolution
metric_definition.append(metric_definition_data)
metric_names_and_values.update({metric_name: metric_value})
return {
"_aws": {
"Timestamp": self.timestamp or int(datetime.datetime.now().timestamp() * 1000), # epoch
"CloudWatchMetrics": [
{
"Namespace": self.namespace, # "test_namespace"
"Dimensions": [list(dimensions.keys())], # [ "service" ]
"Metrics": metric_definition,
},
],
},
# NOTE: Mypy doesn't recognize splats '** syntax' in TypedDict
**dimensions, # "service": "test_service"
**metadata, # type: ignore[typeddict-item] # "username": "test"
**metric_names_and_values, # "single_metric": 1.0
}
def add_dimension(self, name: str, value: str) -> None:
"""Adds given dimension to all metrics
Example
-------
**Add a metric dimensions**
metric.add_dimension(name="operation", value="confirm_booking")
Parameters
----------
name : str
Dimension name
value : str
Dimension value
"""
logger.debug(f"Adding dimension: {name}:{value}")
if len(self.dimension_set) == MAX_DIMENSIONS:
raise SchemaValidationError(
f"Maximum number of dimensions exceeded ({MAX_DIMENSIONS}): Unable to add dimension {name}.",
)
value = value if isinstance(value, str) else str(value)
if not name.strip() or not value.strip():
warnings.warn(
f"The dimension {name} doesn't meet the requirements and won't be added. "
"Ensure the dimension name and value are non-empty strings",
category=PowertoolsUserWarning,
stacklevel=2,
)
return
if name in self.dimension_set or name in self.default_dimensions:
warnings.warn(
f"Dimension '{name}' has already been added. The previous value will be overwritten.",
category=PowertoolsUserWarning,
stacklevel=2,
)
self.dimension_set[name] = value
def add_metadata(self, key: str, value: Any) -> None:
"""Adds high cardinal metadata for metrics object
This will not be available during metrics visualization.
Instead, this will be searchable through logs.
If you're looking to add metadata to filter metrics, then
use add_dimension method.
Example
-------
**Add metrics metadata**
metric.add_metadata(key="booking_id", value="booking_id")
Parameters
----------
key : str
Metadata key
value : any
Metadata value
"""
logger.debug(f"Adding metadata: {key}:{value}")
# Cast key to str according to EMF spec
# Majority of keys are expected to be string already, so
# checking before casting improves performance in most cases
if isinstance(key, str):
self.metadata_set[key] = value
else:
self.metadata_set[str(key)] = value
def set_timestamp(self, timestamp: int | datetime.datetime):
"""
Set the timestamp for the metric.
Parameters
-----------
timestamp: int | datetime.datetime
The timestamp to create the metric.
If an integer is provided, it is assumed to be the epoch time in milliseconds.
If a datetime object is provided, it will be converted to epoch time in milliseconds.
"""
# The timestamp must be a Datetime object or an integer representing an epoch time.
# This should not exceed 14 days in the past or be more than 2 hours in the future.
# Any metrics failing to meet this criteria will be skipped by Amazon CloudWatch.
# See: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Specification.html
# See: https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatch-Logs-Monitoring-CloudWatch-Metrics.html
if not validate_emf_timestamp(timestamp):
warnings.warn(
"This metric doesn't meet the requirements and will be skipped by Amazon CloudWatch. "
"Ensure the timestamp is within 14 days past or 2 hours future.",
stacklevel=2,
)
self.timestamp = convert_timestamp_to_emf_format(timestamp)
def clear_metrics(self) -> None:
logger.debug("Clearing out existing metric set from memory")
self.metric_set.clear()
self.dimension_set.clear()
self.metadata_set.clear()
self.set_default_dimensions(**self.default_dimensions)
def flush_metrics(self, raise_on_empty_metrics: bool = False) -> None:
"""Manually flushes the metrics. This is normally not necessary,
unless you're running on other runtimes besides Lambda, where the @log_metrics
decorator already handles things for you.
Parameters
----------
raise_on_empty_metrics : bool, optional
raise exception if no metrics are emitted, by default False
"""
if not raise_on_empty_metrics and not self.metric_set:
warnings.warn(
"No application metrics to publish. The cold-start metric may be published if enabled. "
"If application metrics should never be empty, consider using 'raise_on_empty_metrics'",
stacklevel=2,
)
elif not is_metrics_disabled():
logger.debug("Flushing existing metrics")
metrics = self.serialize_metric_set()
print(json.dumps(metrics, separators=(",", ":")))
self.clear_metrics()
def log_metrics(
self,
lambda_handler: AnyCallableT | None = None,
capture_cold_start_metric: bool = False,
raise_on_empty_metrics: bool = False,
**kwargs,
):
"""Decorator to serialize and publish metrics at the end of a function execution.
Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler).
Example
-------
**Lambda function using tracer and metrics decorators**
from aws_lambda_powertools import Metrics, Tracer
metrics = Metrics(service="payment")
tracer = Tracer(service="payment")
@tracer.capture_lambda_handler
@metrics.log_metrics
def handler(event, context):
...
Parameters
----------
lambda_handler : Callable[[Any, Any], Any], optional
lambda function handler, by default None
capture_cold_start_metric : bool, optional
captures cold start metric, by default False
raise_on_empty_metrics : bool, optional
raise exception if no metrics are emitted, by default False
**kwargs
Raises
------
e
Propagate error received
"""
default_dimensions = kwargs.get("default_dimensions")
if default_dimensions:
self.set_default_dimensions(**default_dimensions)
return super().log_metrics(
lambda_handler=lambda_handler,
capture_cold_start_metric=capture_cold_start_metric,
raise_on_empty_metrics=raise_on_empty_metrics,
**kwargs,
)
def add_cold_start_metric(self, context: LambdaContext) -> None:
"""Add cold start metric and function_name dimension
Parameters
----------
context : Any
Lambda context
"""
logger.debug("Adding cold start metric and function_name dimension")
with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace=self.namespace) as metric:
metric.add_dimension(name="function_name", value=context.function_name)
if self.service:
metric.add_dimension(name="service", value=str(self.service))
def set_default_dimensions(self, **dimensions) -> None:
"""Persist dimensions across Lambda invocations
Parameters
----------
dimensions : dict[str, Any], optional
metric dimensions as key=value
Example
-------
**Sets some default dimensions that will always be present across metrics and invocations**
from aws_lambda_powertools import Metrics
metrics = Metrics(namespace="ServerlessAirline", service="payment")
metrics.set_default_dimensions(environment="demo", another="one")
@metrics.log_metrics()
def lambda_handler():
return True
"""
for name, value in dimensions.items():
self.add_dimension(name, value)
self.default_dimensions.update(**dimensions)