|
| 1 | +""" |
| 2 | +Author: Sanjay Muthu <https://github.com/XenoBytesX> |
| 3 | +
|
| 4 | +This is an implementation of the Dynamic Programming solution to the Range Sum Query. |
| 5 | +
|
| 6 | +The problem statement is: |
| 7 | + Given an array and q queries, |
| 8 | + each query stating you to find the sum of elements from l to r (inclusive) |
| 9 | +
|
| 10 | +Example: |
| 11 | + arr = [1, 4, 6, 2, 61, 12] |
| 12 | + queries = 3 |
| 13 | + l_1 = 2, r_1 = 5 |
| 14 | + l_2 = 1, r_2 = 5 |
| 15 | + l_3 = 3, r_3 = 4 |
| 16 | +
|
| 17 | + as input will return |
| 18 | +
|
| 19 | + [81, 85, 63] |
| 20 | +
|
| 21 | + as output |
| 22 | +
|
| 23 | +0-indexing: |
| 24 | +NOTE: 0-indexing means the indexing of the array starts from 0 |
| 25 | +Example: a = [1, 2, 3, 4, 5, 6] |
| 26 | + Here, the 0th index of a is 1, |
| 27 | + the 1st index of a is 2, |
| 28 | + and so forth |
| 29 | +
|
| 30 | +Time Complexity: O(N + Q) |
| 31 | +* O(N) pre-calculation time to calculate the prefix sum array |
| 32 | +* and O(1) time per each query = O(1 * Q) = O(Q) time |
| 33 | +
|
| 34 | +Space Complexity: O(N) |
| 35 | +* O(N) to store the prefix sum |
| 36 | +
|
| 37 | +Algorithm: |
| 38 | +So, first we calculate the prefix sum (dp) of the array. |
| 39 | +The prefix sum of the index i is the sum of all elements indexed |
| 40 | +from 0 to i (inclusive). |
| 41 | +The prefix sum of the index i is the prefix sum of index (i - 1) + the current element. |
| 42 | +So, the state of the dp is dp[i] = dp[i - 1] + a[i]. |
| 43 | +
|
| 44 | +After we calculate the prefix sum, |
| 45 | +for each query [l, r] |
| 46 | +the answer is dp[r] - dp[l - 1] (we need to be careful because l might be 0). |
| 47 | +For example take this array: |
| 48 | + [4, 2, 1, 6, 3] |
| 49 | +The prefix sum calculated for this array would be: |
| 50 | + [4, 4 + 2, 4 + 2 + 1, 4 + 2 + 1 + 6, 4 + 2 + 1 + 6 + 3] |
| 51 | + ==> [4, 6, 7, 13, 16] |
| 52 | +If the query was l = 3, r = 4, |
| 53 | +the answer would be 6 + 3 = 9 but this would require O(r - l + 1) time ≈ O(N) time |
| 54 | +
|
| 55 | +If we use prefix sums we can find it in O(1) by using the formula |
| 56 | +prefix[r] - prefix[l - 1]. |
| 57 | +This formula works because prefix[r] is the sum of elements from [0, r] |
| 58 | +and prefix[l - 1] is the sum of elements from [0, l - 1], |
| 59 | +so if we do prefix[r] - prefix[l - 1] it will be |
| 60 | +[0, r] - [0, l - 1] = [0, l - 1] + [l, r] - [0, l - 1] = [l, r] |
| 61 | +""" |
| 62 | + |
| 63 | + |
| 64 | +def prefix_sum(array: list[int], queries: list[tuple[int, int]]) -> list[int]: |
| 65 | + """ |
| 66 | + >>> prefix_sum([1, 4, 6, 2, 61, 12], [(2, 5), (1, 5), (3, 4)]) |
| 67 | + [81, 85, 63] |
| 68 | + >>> prefix_sum([4, 2, 1, 6, 3], [(3, 4), (1, 3), (0, 2)]) |
| 69 | + [9, 9, 7] |
| 70 | + """ |
| 71 | + # The prefix sum array |
| 72 | + dp = [0] * len(array) |
| 73 | + dp[0] = array[0] |
| 74 | + for i in range(1, len(array)): |
| 75 | + dp[i] = dp[i - 1] + array[i] |
| 76 | + |
| 77 | + # See Algorithm section (Line 44) |
| 78 | + result = [] |
| 79 | + for query in queries: |
| 80 | + left, right = query |
| 81 | + res = dp[right] |
| 82 | + if left > 0: |
| 83 | + res -= dp[left - 1] |
| 84 | + result.append(res) |
| 85 | + |
| 86 | + return result |
| 87 | + |
| 88 | + |
| 89 | +if __name__ == "__main__": |
| 90 | + import doctest |
| 91 | + |
| 92 | + doctest.testmod() |
0 commit comments