|
1 | 1 | package com.fishercoder.solutions;
|
2 | 2 |
|
3 |
| -/** |
4 |
| - * 498. Diagonal Traverse |
5 |
| - * |
6 |
| - * Given a matrix of m x N elements (m rows, N columns), return all elements of the matrix in diagonal order |
7 |
| - * as shown in the below image. |
8 |
| -
|
9 |
| - Example: |
10 |
| -
|
11 |
| - Input: |
12 |
| - [ |
13 |
| - [ 1, 2, 3 ], |
14 |
| - [ 4, 5, 6 ], |
15 |
| - [ 7, 8, 9 ] |
16 |
| - ] |
17 |
| - Output: [1,2,4,7,5,3,6,8,9] |
18 |
| -
|
19 |
| - Note: |
20 |
| -
|
21 |
| - The total number of elements of the given matrix will not exceed 10,000. |
22 |
| -
|
23 |
| - */ |
24 | 3 | public class _498 {
|
25 | 4 |
|
26 |
| -public static class Solutoin1 { |
27 |
| - /** |
28 |
| - * Reference: https://discuss.leetcode.com/topic/77865/concise-java-solution/2 |
29 |
| - * Just keep walking the matrix, when hitting the four borders (top, bottom, left or right), |
30 |
| - * just directions and keep walking. |
31 |
| - */ |
32 |
| - public int[] findDiagonalOrder(int[][] matrix) { |
| 5 | + public static class Solutoin1 { |
| 6 | + /** |
| 7 | + * Reference: https://discuss.leetcode.com/topic/77865/concise-java-solution/2 |
| 8 | + * Just keep walking the matrix, when hitting the four borders (top, bottom, left or right), |
| 9 | + * just directions and keep walking. |
| 10 | + */ |
| 11 | + public int[] findDiagonalOrder(int[][] matrix) { |
33 | 12 |
|
34 |
| - if (matrix == null || matrix.length == 0) { |
35 |
| - return new int[0]; |
36 |
| - } |
37 |
| - int m = matrix.length; |
38 |
| - int n = matrix[0].length; |
39 |
| - int[] result = new int[m * n]; |
40 |
| - int d = 1; |
41 |
| - int i = 0; |
42 |
| - int j = 0; |
43 |
| - for (int k = 0; k < m * n; ) { |
44 |
| - result[k++] = matrix[i][j]; |
45 |
| - i -= d; |
46 |
| - j += d; |
47 |
| - |
48 |
| - if (i >= m) { |
49 |
| - i = m - 1; |
50 |
| - j += 2; |
51 |
| - d = -d; |
52 |
| - } |
53 |
| - if (j >= n) { |
54 |
| - j = n - 1; |
55 |
| - i += 2; |
56 |
| - d = -d; |
| 13 | + if (matrix == null || matrix.length == 0) { |
| 14 | + return new int[0]; |
57 | 15 | }
|
58 |
| - if (i < 0) { |
59 |
| - i = 0; |
60 |
| - d = -d; |
61 |
| - } |
62 |
| - if (j < 0) { |
63 |
| - j = 0; |
64 |
| - d = -d; |
| 16 | + int m = matrix.length; |
| 17 | + int n = matrix[0].length; |
| 18 | + int[] result = new int[m * n]; |
| 19 | + int d = 1; |
| 20 | + int i = 0; |
| 21 | + int j = 0; |
| 22 | + for (int k = 0; k < m * n; ) { |
| 23 | + result[k++] = matrix[i][j]; |
| 24 | + i -= d; |
| 25 | + j += d; |
| 26 | + |
| 27 | + if (i >= m) { |
| 28 | + i = m - 1; |
| 29 | + j += 2; |
| 30 | + d = -d; |
| 31 | + } |
| 32 | + if (j >= n) { |
| 33 | + j = n - 1; |
| 34 | + i += 2; |
| 35 | + d = -d; |
| 36 | + } |
| 37 | + if (i < 0) { |
| 38 | + i = 0; |
| 39 | + d = -d; |
| 40 | + } |
| 41 | + if (j < 0) { |
| 42 | + j = 0; |
| 43 | + d = -d; |
| 44 | + } |
65 | 45 | }
|
| 46 | + return result; |
66 | 47 | }
|
67 |
| - return result; |
68 | 48 | }
|
69 |
| -} |
70 | 49 |
|
71 | 50 | }
|
0 commit comments