forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimeseries.py
449 lines (316 loc) · 12.7 KB
/
timeseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
from datetime import timedelta
import dateutil
import numpy as np
from pandas import DataFrame, Series, date_range, period_range, to_datetime
from pandas.tseries.frequencies import infer_freq
try:
from pandas.plotting._matplotlib.converter import DatetimeConverter
except ImportError:
from pandas.tseries.converter import DatetimeConverter
class DatetimeIndex:
params = ["dst", "repeated", "tz_aware", "tz_local", "tz_naive"]
param_names = ["index_type"]
def setup(self, index_type):
N = 100000
dtidxes = {
"dst": date_range(
start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="S"
),
"repeated": date_range(start="2000", periods=N / 10, freq="s").repeat(10),
"tz_aware": date_range(start="2000", periods=N, freq="s", tz="US/Eastern"),
"tz_local": date_range(
start="2000", periods=N, freq="s", tz=dateutil.tz.tzlocal()
),
"tz_naive": date_range(start="2000", periods=N, freq="s"),
}
self.index = dtidxes[index_type]
def time_add_timedelta(self, index_type):
self.index + timedelta(minutes=2)
def time_normalize(self, index_type):
self.index.normalize()
def time_unique(self, index_type):
self.index.unique()
def time_to_time(self, index_type):
self.index.time
def time_get(self, index_type):
self.index[0]
def time_timeseries_is_month_start(self, index_type):
self.index.is_month_start
def time_to_date(self, index_type):
self.index.date
def time_to_pydatetime(self, index_type):
self.index.to_pydatetime()
def time_is_dates_only(self, index_type):
self.index._is_dates_only
class TzLocalize:
params = [None, "US/Eastern", "UTC", dateutil.tz.tzutc()]
param_names = "tz"
def setup(self, tz):
dst_rng = date_range(
start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="S"
)
self.index = date_range(start="10/29/2000", end="10/29/2000 00:59:59", freq="S")
self.index = self.index.append(dst_rng)
self.index = self.index.append(dst_rng)
self.index = self.index.append(
date_range(start="10/29/2000 2:00:00", end="10/29/2000 3:00:00", freq="S")
)
def time_infer_dst(self, tz):
self.index.tz_localize(tz, ambiguous="infer")
class ResetIndex:
params = [None, "US/Eastern"]
param_names = "tz"
def setup(self, tz):
idx = date_range(start="1/1/2000", periods=1000, freq="H", tz=tz)
self.df = DataFrame(np.random.randn(1000, 2), index=idx)
def time_reest_datetimeindex(self, tz):
self.df.reset_index()
class InferFreq:
params = [None, "D", "B"]
param_names = ["freq"]
def setup(self, freq):
if freq is None:
self.idx = date_range(start="1/1/1700", freq="D", periods=10000)
self.idx._data._freq = None
else:
self.idx = date_range(start="1/1/1700", freq=freq, periods=10000)
def time_infer_freq(self, freq):
infer_freq(self.idx)
class TimeDatetimeConverter:
def setup(self):
N = 100000
self.rng = date_range(start="1/1/2000", periods=N, freq="T")
def time_convert(self):
DatetimeConverter.convert(self.rng, None, None)
class Iteration:
params = [date_range, period_range]
param_names = ["time_index"]
def setup(self, time_index):
N = 10 ** 6
self.idx = time_index(start="20140101", freq="T", periods=N)
self.exit = 10000
def time_iter(self, time_index):
for _ in self.idx:
pass
def time_iter_preexit(self, time_index):
for i, _ in enumerate(self.idx):
if i > self.exit:
break
class ResampleDataFrame:
params = ["max", "mean", "min"]
param_names = ["method"]
def setup(self, method):
rng = date_range(start="20130101", periods=100000, freq="50L")
df = DataFrame(np.random.randn(100000, 2), index=rng)
self.resample = getattr(df.resample("1s"), method)
def time_method(self, method):
self.resample()
class ResampleSeries:
params = (["period", "datetime"], ["5min", "1D"], ["mean", "ohlc"])
param_names = ["index", "freq", "method"]
def setup(self, index, freq, method):
indexes = {
"period": period_range(start="1/1/2000", end="1/1/2001", freq="T"),
"datetime": date_range(start="1/1/2000", end="1/1/2001", freq="T"),
}
idx = indexes[index]
ts = Series(np.random.randn(len(idx)), index=idx)
self.resample = getattr(ts.resample(freq), method)
def time_resample(self, index, freq, method):
self.resample()
class ResampleDatetetime64:
# GH 7754
def setup(self):
rng3 = date_range(
start="2000-01-01 00:00:00", end="2000-01-01 10:00:00", freq="555000U"
)
self.dt_ts = Series(5, rng3, dtype="datetime64[ns]")
def time_resample(self):
self.dt_ts.resample("1S").last()
class AsOf:
params = ["DataFrame", "Series"]
param_names = ["constructor"]
def setup(self, constructor):
N = 10000
M = 10
rng = date_range(start="1/1/1990", periods=N, freq="53s")
data = {
"DataFrame": DataFrame(np.random.randn(N, M)),
"Series": Series(np.random.randn(N)),
}
self.ts = data[constructor]
self.ts.index = rng
self.ts2 = self.ts.copy()
self.ts2.iloc[250:5000] = np.nan
self.ts3 = self.ts.copy()
self.ts3.iloc[-5000:] = np.nan
self.dates = date_range(start="1/1/1990", periods=N * 10, freq="5s")
self.date = self.dates[0]
self.date_last = self.dates[-1]
self.date_early = self.date - timedelta(10)
# test speed of pre-computing NAs.
def time_asof(self, constructor):
self.ts.asof(self.dates)
# should be roughly the same as above.
def time_asof_nan(self, constructor):
self.ts2.asof(self.dates)
# test speed of the code path for a scalar index
# without *while* loop
def time_asof_single(self, constructor):
self.ts.asof(self.date)
# test speed of the code path for a scalar index
# before the start. should be the same as above.
def time_asof_single_early(self, constructor):
self.ts.asof(self.date_early)
# test the speed of the code path for a scalar index
# with a long *while* loop. should still be much
# faster than pre-computing all the NAs.
def time_asof_nan_single(self, constructor):
self.ts3.asof(self.date_last)
class SortIndex:
params = [True, False]
param_names = ["monotonic"]
def setup(self, monotonic):
N = 10 ** 5
idx = date_range(start="1/1/2000", periods=N, freq="s")
self.s = Series(np.random.randn(N), index=idx)
if not monotonic:
self.s = self.s.sample(frac=1)
def time_sort_index(self, monotonic):
self.s.sort_index()
def time_get_slice(self, monotonic):
self.s[:10000]
class Lookup:
def setup(self):
N = 1500000
rng = date_range(start="1/1/2000", periods=N, freq="S")
self.ts = Series(1, index=rng)
self.lookup_val = rng[N // 2]
def time_lookup_and_cleanup(self):
self.ts[self.lookup_val]
self.ts.index._cleanup()
class ToDatetimeFromIntsFloats:
def setup(self):
self.ts_sec = Series(range(1521080307, 1521685107), dtype="int64")
self.ts_sec_float = self.ts_sec.astype("float64")
self.ts_nanosec = 1_000_000 * self.ts_sec
self.ts_nanosec_float = self.ts_nanosec.astype("float64")
# speed of int64 and float64 paths should be comparable
def time_nanosec_int64(self):
to_datetime(self.ts_nanosec, unit="ns")
def time_nanosec_float64(self):
to_datetime(self.ts_nanosec_float, unit="ns")
def time_sec_int64(self):
to_datetime(self.ts_sec, unit="s")
def time_sec_float64(self):
to_datetime(self.ts_sec_float, unit="s")
class ToDatetimeYYYYMMDD:
def setup(self):
rng = date_range(start="1/1/2000", periods=10000, freq="D")
self.stringsD = Series(rng.strftime("%Y%m%d"))
def time_format_YYYYMMDD(self):
to_datetime(self.stringsD, format="%Y%m%d")
class ToDatetimeCacheSmallCount:
params = ([True, False], [50, 500, 5000, 100000])
param_names = ["cache", "count"]
def setup(self, cache, count):
rng = date_range(start="1/1/1971", periods=count)
self.unique_date_strings = rng.strftime("%Y-%m-%d").tolist()
def time_unique_date_strings(self, cache, count):
to_datetime(self.unique_date_strings, cache=cache)
class ToDatetimeISO8601:
def setup(self):
rng = date_range(start="1/1/2000", periods=20000, freq="H")
self.strings = rng.strftime("%Y-%m-%d %H:%M:%S").tolist()
self.strings_nosep = rng.strftime("%Y%m%d %H:%M:%S").tolist()
self.strings_tz_space = [
x.strftime("%Y-%m-%d %H:%M:%S") + " -0800" for x in rng
]
def time_iso8601(self):
to_datetime(self.strings)
def time_iso8601_nosep(self):
to_datetime(self.strings_nosep)
def time_iso8601_format(self):
to_datetime(self.strings, format="%Y-%m-%d %H:%M:%S")
def time_iso8601_format_no_sep(self):
to_datetime(self.strings_nosep, format="%Y%m%d %H:%M:%S")
def time_iso8601_tz_spaceformat(self):
to_datetime(self.strings_tz_space)
class ToDatetimeNONISO8601:
def setup(self):
N = 10000
half = int(N / 2)
ts_string_1 = "March 1, 2018 12:00:00+0400"
ts_string_2 = "March 1, 2018 12:00:00+0500"
self.same_offset = [ts_string_1] * N
self.diff_offset = [ts_string_1] * half + [ts_string_2] * half
def time_same_offset(self):
to_datetime(self.same_offset)
def time_different_offset(self):
to_datetime(self.diff_offset)
class ToDatetimeFormatQuarters:
def setup(self):
self.s = Series(["2Q2005", "2Q05", "2005Q1", "05Q1"] * 10000)
def time_infer_quarter(self):
to_datetime(self.s)
class ToDatetimeFormat:
def setup(self):
N = 100000
self.s = Series(["19MAY11", "19MAY11:00:00:00"] * N)
self.s2 = self.s.str.replace(":\\S+$", "")
self.same_offset = ["10/11/2018 00:00:00.045-07:00"] * N
self.diff_offset = [
f"10/11/2018 00:00:00.045-0{offset}:00" for offset in range(10)
] * int(N / 10)
def time_exact(self):
to_datetime(self.s2, format="%d%b%y")
def time_no_exact(self):
to_datetime(self.s, format="%d%b%y", exact=False)
def time_same_offset(self):
to_datetime(self.same_offset, format="%m/%d/%Y %H:%M:%S.%f%z")
def time_different_offset(self):
to_datetime(self.diff_offset, format="%m/%d/%Y %H:%M:%S.%f%z")
def time_same_offset_to_utc(self):
to_datetime(self.same_offset, format="%m/%d/%Y %H:%M:%S.%f%z", utc=True)
def time_different_offset_to_utc(self):
to_datetime(self.diff_offset, format="%m/%d/%Y %H:%M:%S.%f%z", utc=True)
class ToDatetimeCache:
params = [True, False]
param_names = ["cache"]
def setup(self, cache):
N = 10000
self.unique_numeric_seconds = list(range(N))
self.dup_numeric_seconds = [1000] * N
self.dup_string_dates = ["2000-02-11"] * N
self.dup_string_with_tz = ["2000-02-11 15:00:00-0800"] * N
def time_unique_seconds_and_unit(self, cache):
to_datetime(self.unique_numeric_seconds, unit="s", cache=cache)
def time_dup_seconds_and_unit(self, cache):
to_datetime(self.dup_numeric_seconds, unit="s", cache=cache)
def time_dup_string_dates(self, cache):
to_datetime(self.dup_string_dates, cache=cache)
def time_dup_string_dates_and_format(self, cache):
to_datetime(self.dup_string_dates, format="%Y-%m-%d", cache=cache)
def time_dup_string_tzoffset_dates(self, cache):
to_datetime(self.dup_string_with_tz, cache=cache)
class DatetimeAccessor:
params = [None, "US/Eastern", "UTC", dateutil.tz.tzutc()]
param_names = "tz"
def setup(self, tz):
N = 100000
self.series = Series(date_range(start="1/1/2000", periods=N, freq="T", tz=tz))
def time_dt_accessor(self, tz):
self.series.dt
def time_dt_accessor_normalize(self, tz):
self.series.dt.normalize()
def time_dt_accessor_month_name(self, tz):
self.series.dt.month_name()
def time_dt_accessor_day_name(self, tz):
self.series.dt.day_name()
def time_dt_accessor_time(self, tz):
self.series.dt.time
def time_dt_accessor_date(self, tz):
self.series.dt.date
def time_dt_accessor_year(self, tz):
self.series.dt.year
from .pandas_vb_common import setup # noqa: F401 isort:skip