@@ -231,7 +231,6 @@ def ml_mlp_mul_ms(station_name="종로구"):
231
231
232
232
# num_layer == number of hidden layer
233
233
hparams = Namespace (
234
- sigma = 1.0 ,
235
234
num_layers = 1 ,
236
235
layer_size = 128 ,
237
236
learning_rate = learning_rate ,
@@ -321,7 +320,6 @@ def objective(trial):
321
320
fig_slice .write_image (str (output_dir / "slice.svg" ))
322
321
323
322
# set hparams with optmized value
324
- hparams .sigma = trial .params ['sigma' ]
325
323
hparams .num_layers = trial .params ['num_layers' ]
326
324
hparams .layer_size = trial .params ['layer_size' ]
327
325
@@ -439,12 +437,10 @@ def __init__(self, *args, **kwargs):
439
437
# num_layer == number of hidden layer
440
438
self .layer_sizes = [self .input_size , self .output_size ]
441
439
if self .trial :
442
- self .hparams .sigma = self .trial .suggest_float (
443
- "sigma" , 0.5 , 1.5 , step = 0.05 )
444
440
self .hparams .num_layers = self .trial .suggest_int (
445
441
"num_layers" , 2 , 8 )
446
442
self .hparams .layer_size = self .trial .suggest_int (
447
- "layer_size" , 8 , 1024 )
443
+ "layer_size" , 8 , 512 )
448
444
449
445
for l in range (self .hparams .num_layers ):
450
446
# insert another layer_size to end of list of layer_size
@@ -500,7 +496,7 @@ def forward(self, x, x1d):
500
496
def configure_optimizers (self ):
501
497
return torch .optim .Adam (self .parameters (),
502
498
lr = self .hparams .learning_rate ,
503
- weight_decay = 0.001 )
499
+ weight_decay = 0.01 )
504
500
505
501
def training_step (self , batch , batch_idx ):
506
502
x , x1d , _y , _y_raw , dates = batch
0 commit comments