|
17 | 17 | """
|
18 | 18 | Additional Spark functions used in pandas-on-Spark.
|
19 | 19 | """
|
20 |
| -from typing import Union, no_type_check |
| 20 | +from typing import Union |
21 | 21 |
|
22 | 22 | from pyspark import SparkContext
|
23 | 23 | import pyspark.sql.functions as F
|
24 |
| -from pyspark.sql.column import ( |
25 |
| - Column, |
26 |
| - _to_java_column, |
27 |
| - _create_column_from_literal, |
28 |
| -) |
| 24 | +from pyspark.sql.column import Column |
29 | 25 |
|
30 | 26 | # For supporting Spark Connect
|
31 | 27 | from pyspark.sql.utils import is_remote
|
@@ -145,27 +141,3 @@ def repeat(col: Column, n: Union[int, Column]) -> Column:
|
145 | 141 | """
|
146 | 142 | _n = F.lit(n) if isinstance(n, int) else n
|
147 | 143 | return F.call_udf("repeat", col, _n)
|
148 |
| - |
149 |
| - |
150 |
| -def date_part(field: Union[str, Column], source: Column) -> Column: |
151 |
| - """ |
152 |
| - Extracts a part of the date/timestamp or interval source. |
153 |
| - """ |
154 |
| - sc = SparkContext._active_spark_context |
155 |
| - field = ( |
156 |
| - _to_java_column(field) if isinstance(field, Column) else _create_column_from_literal(field) |
157 |
| - ) |
158 |
| - return _call_udf(sc, "date_part", field, _to_java_column(source)) |
159 |
| - |
160 |
| - |
161 |
| -@no_type_check |
162 |
| -def _call_udf(sc, name, *cols): |
163 |
| - return Column(sc._jvm.functions.callUDF(name, _make_arguments(sc, *cols))) |
164 |
| - |
165 |
| - |
166 |
| -@no_type_check |
167 |
| -def _make_arguments(sc, *cols): |
168 |
| - java_arr = sc._gateway.new_array(sc._jvm.Column, len(cols)) |
169 |
| - for i, col in enumerate(cols): |
170 |
| - java_arr[i] = col |
171 |
| - return java_arr |
0 commit comments