forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormalize.py
286 lines (233 loc) · 9.2 KB
/
normalize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# ---------------------------------------------------------------------
# JSON normalization routines
from collections import defaultdict
import copy
import numpy as np
from pandas._libs.writers import convert_json_to_lines
from pandas import DataFrame, compat
def _convert_to_line_delimits(s):
"""
Helper function that converts JSON lists to line delimited JSON.
"""
# Determine we have a JSON list to turn to lines otherwise just return the
# json object, only lists can
if not s[0] == '[' and s[-1] == ']':
return s
s = s[1:-1]
return convert_json_to_lines(s)
def nested_to_record(ds, prefix="", sep=".", level=0):
"""
A simplified json_normalize.
Converts a nested dict into a flat dict ("record"), unlike json_normalize,
it does not attempt to extract a subset of the data.
Parameters
----------
ds : dict or list of dicts
prefix: the prefix, optional, default: ""
sep : string, default '.'
Nested records will generate names separated by sep,
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
.. versionadded:: 0.20.0
level: the number of levels in the jason string, optional, default: 0
Returns
-------
d - dict or list of dicts, matching `ds`
Examples
--------
IN[52]: nested_to_record(dict(flat1=1,dict1=dict(c=1,d=2),
nested=dict(e=dict(c=1,d=2),d=2)))
Out[52]:
{'dict1.c': 1,
'dict1.d': 2,
'flat1': 1,
'nested.d': 2,
'nested.e.c': 1,
'nested.e.d': 2}
"""
singleton = False
if isinstance(ds, dict):
ds = [ds]
singleton = True
new_ds = []
for d in ds:
new_d = copy.deepcopy(d)
for k, v in d.items():
# each key gets renamed with prefix
if not isinstance(k, compat.string_types):
k = str(k)
if level == 0:
newkey = k
else:
newkey = prefix + sep + k
# only dicts gets recurse-flattend
# only at level>1 do we rename the rest of the keys
if not isinstance(v, dict):
if level != 0: # so we skip copying for top level, common case
v = new_d.pop(k)
new_d[newkey] = v
continue
else:
v = new_d.pop(k)
new_d.update(nested_to_record(v, newkey, sep, level + 1))
new_ds.append(new_d)
if singleton:
return new_ds[0]
return new_ds
def json_normalize(data, record_path=None, meta=None,
meta_prefix=None,
record_prefix=None,
errors='raise',
sep='.'):
"""
Normalize semi-structured JSON data into a flat table.
Parameters
----------
data : dict or list of dicts
Unserialized JSON objects
record_path : string or list of strings, default None
Path in each object to list of records. If not passed, data will be
assumed to be an array of records
meta : list of paths (string or list of strings), default None
Fields to use as metadata for each record in resulting table
meta_prefix : string, default None
record_prefix : string, default None
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
path to records is ['foo', 'bar']
errors : {'raise', 'ignore'}, default 'raise'
* 'ignore' : will ignore KeyError if keys listed in meta are not
always present
* 'raise' : will raise KeyError if keys listed in meta are not
always present
.. versionadded:: 0.20.0
sep : string, default '.'
Nested records will generate names separated by sep,
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
.. versionadded:: 0.20.0
Returns
-------
frame : DataFrame
Examples
--------
>>> from pandas.io.json import json_normalize
>>> data = [{'id': 1, 'name': {'first': 'Coleen', 'last': 'Volk'}},
... {'name': {'given': 'Mose', 'family': 'Regner'}},
... {'id': 2, 'name': 'Faye Raker'}]
>>> json_normalize(data)
id name name.family name.first name.given name.last
0 1.0 NaN NaN Coleen NaN Volk
1 NaN NaN Regner NaN Mose NaN
2 2.0 Faye Raker NaN NaN NaN NaN
>>> data = [{'state': 'Florida',
... 'shortname': 'FL',
... 'info': {
... 'governor': 'Rick Scott'
... },
... 'counties': [{'name': 'Dade', 'population': 12345},
... {'name': 'Broward', 'population': 40000},
... {'name': 'Palm Beach', 'population': 60000}]},
... {'state': 'Ohio',
... 'shortname': 'OH',
... 'info': {
... 'governor': 'John Kasich'
... },
... 'counties': [{'name': 'Summit', 'population': 1234},
... {'name': 'Cuyahoga', 'population': 1337}]}]
>>> result = json_normalize(data, 'counties', ['state', 'shortname',
... ['info', 'governor']])
>>> result
name population info.governor state shortname
0 Dade 12345 Rick Scott Florida FL
1 Broward 40000 Rick Scott Florida FL
2 Palm Beach 60000 Rick Scott Florida FL
3 Summit 1234 John Kasich Ohio OH
4 Cuyahoga 1337 John Kasich Ohio OH
>>> data = {'A': [1, 2]}
>>> json_normalize(data, 'A', record_prefix='Prefix.')
Prefix.0
0 1
1 2
"""
def _pull_field(js, spec):
result = js
if isinstance(spec, list):
for field in spec:
result = result[field]
else:
result = result[spec]
return result
if isinstance(data, list) and not data:
return DataFrame()
# A bit of a hackjob
if isinstance(data, dict):
data = [data]
if record_path is None:
if any([isinstance(x, dict)
for x in compat.itervalues(y)] for y in data):
# naive normalization, this is idempotent for flat records
# and potentially will inflate the data considerably for
# deeply nested structures:
# {VeryLong: { b: 1,c:2}} -> {VeryLong.b:1 ,VeryLong.c:@}
#
# TODO: handle record value which are lists, at least error
# reasonably
data = nested_to_record(data, sep=sep)
return DataFrame(data)
elif not isinstance(record_path, list):
record_path = [record_path]
if meta is None:
meta = []
elif not isinstance(meta, list):
meta = [meta]
meta = [m if isinstance(m, list) else [m] for m in meta]
# Disastrously inefficient for now
records = []
lengths = []
meta_vals = defaultdict(list)
if not isinstance(sep, compat.string_types):
sep = str(sep)
meta_keys = [sep.join(val) for val in meta]
def _recursive_extract(data, path, seen_meta, level=0):
if isinstance(data, dict):
data = [data]
if len(path) > 1:
for obj in data:
for val, key in zip(meta, meta_keys):
if level + 1 == len(val):
seen_meta[key] = _pull_field(obj, val[-1])
_recursive_extract(obj[path[0]], path[1:],
seen_meta, level=level + 1)
else:
for obj in data:
recs = _pull_field(obj, path[0])
# For repeating the metadata later
lengths.append(len(recs))
for val, key in zip(meta, meta_keys):
if level + 1 > len(val):
meta_val = seen_meta[key]
else:
try:
meta_val = _pull_field(obj, val[level:])
except KeyError as e:
if errors == 'ignore':
meta_val = np.nan
else:
raise KeyError("Try running with "
"errors='ignore' as key "
"{err} is not always present"
.format(err=e))
meta_vals[key].append(meta_val)
records.extend(recs)
_recursive_extract(data, record_path, {}, level=0)
result = DataFrame(records)
if record_prefix is not None:
result = result.rename(
columns=lambda x: "{p}{c}".format(p=record_prefix, c=x))
# Data types, a problem
for k, v in compat.iteritems(meta_vals):
if meta_prefix is not None:
k = meta_prefix + k
if k in result:
raise ValueError('Conflicting metadata name {name}, '
'need distinguishing prefix '.format(name=k))
result[k] = np.array(v, dtype=object).repeat(lengths)
return result