forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_parquet.py
578 lines (448 loc) · 19.5 KB
/
test_parquet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
""" test parquet compat """
import os
import pytest
import datetime
from distutils.version import LooseVersion
from warnings import catch_warnings
import numpy as np
import pandas as pd
from pandas.compat import PY3, is_platform_windows, is_platform_mac
from pandas.io.parquet import (to_parquet, read_parquet, get_engine,
PyArrowImpl, FastParquetImpl)
from pandas.util import testing as tm
try:
import pyarrow # noqa
_HAVE_PYARROW = True
except ImportError:
_HAVE_PYARROW = False
try:
import fastparquet # noqa
_HAVE_FASTPARQUET = True
except ImportError:
_HAVE_FASTPARQUET = False
# setup engines & skips
@pytest.fixture(params=[
pytest.param('fastparquet',
marks=pytest.mark.skipif(not _HAVE_FASTPARQUET,
reason='fastparquet is '
'not installed')),
pytest.param('pyarrow',
marks=pytest.mark.skipif(not _HAVE_PYARROW,
reason='pyarrow is '
'not installed'))])
def engine(request):
return request.param
@pytest.fixture
def pa():
if not _HAVE_PYARROW:
pytest.skip("pyarrow is not installed")
return 'pyarrow'
@pytest.fixture
def pa_lt_070():
if not _HAVE_PYARROW:
pytest.skip("pyarrow is not installed")
if LooseVersion(pyarrow.__version__) >= LooseVersion('0.7.0'):
pytest.skip("pyarrow is >= 0.7.0")
return 'pyarrow'
@pytest.fixture
def pa_ge_070():
if not _HAVE_PYARROW:
pytest.skip("pyarrow is not installed")
if LooseVersion(pyarrow.__version__) < LooseVersion('0.7.0'):
pytest.skip("pyarrow is < 0.7.0")
return 'pyarrow'
@pytest.fixture
def fp():
if not _HAVE_FASTPARQUET:
pytest.skip("fastparquet is not installed")
return 'fastparquet'
@pytest.fixture
def fp_lt_014():
if not _HAVE_FASTPARQUET:
pytest.skip("fastparquet is not installed")
if LooseVersion(fastparquet.__version__) >= LooseVersion('0.1.4'):
pytest.skip("fastparquet is >= 0.1.4")
return 'fastparquet'
@pytest.fixture
def df_compat():
return pd.DataFrame({'A': [1, 2, 3], 'B': 'foo'})
@pytest.fixture
def df_cross_compat():
df = pd.DataFrame({'a': list('abc'),
'b': list(range(1, 4)),
# 'c': np.arange(3, 6).astype('u1'),
'd': np.arange(4.0, 7.0, dtype='float64'),
'e': [True, False, True],
'f': pd.date_range('20130101', periods=3),
# 'g': pd.date_range('20130101', periods=3,
# tz='US/Eastern'),
# 'h': pd.date_range('20130101', periods=3, freq='ns')
})
return df
@pytest.fixture
def df_full():
return pd.DataFrame(
{'string': list('abc'),
'string_with_nan': ['a', np.nan, 'c'],
'string_with_none': ['a', None, 'c'],
'bytes': [b'foo', b'bar', b'baz'],
'unicode': [u'foo', u'bar', u'baz'],
'int': list(range(1, 4)),
'uint': np.arange(3, 6).astype('u1'),
'float': np.arange(4.0, 7.0, dtype='float64'),
'float_with_nan': [2., np.nan, 3.],
'bool': [True, False, True],
'datetime': pd.date_range('20130101', periods=3),
'datetime_with_nat': [pd.Timestamp('20130101'),
pd.NaT,
pd.Timestamp('20130103')]})
def check_round_trip(df, engine=None, path=None,
write_kwargs=None, read_kwargs=None,
expected=None, check_names=True,
repeat=2):
"""Verify parquet serializer and deserializer produce the same results.
Performs a pandas to disk and disk to pandas round trip,
then compares the 2 resulting DataFrames to verify equality.
Parameters
----------
df: Dataframe
engine: str, optional
'pyarrow' or 'fastparquet'
path: str, optional
write_kwargs: dict of str:str, optional
read_kwargs: dict of str:str, optional
expected: DataFrame, optional
Expected deserialization result, otherwise will be equal to `df`
check_names: list of str, optional
Closed set of column names to be compared
repeat: int, optional
How many times to repeat the test
"""
write_kwargs = write_kwargs or {'compression': None}
read_kwargs = read_kwargs or {}
if expected is None:
expected = df
if engine:
write_kwargs['engine'] = engine
read_kwargs['engine'] = engine
def compare(repeat):
for _ in range(repeat):
df.to_parquet(path, **write_kwargs)
with catch_warnings(record=True):
actual = read_parquet(path, **read_kwargs)
tm.assert_frame_equal(expected, actual,
check_names=check_names)
if path is None:
with tm.ensure_clean() as path:
compare(repeat)
else:
compare(repeat)
def test_invalid_engine(df_compat):
with pytest.raises(ValueError):
check_round_trip(df_compat, 'foo', 'bar')
def test_options_py(df_compat, pa):
# use the set option
with pd.option_context('io.parquet.engine', 'pyarrow'):
check_round_trip(df_compat)
def test_options_fp(df_compat, fp):
# use the set option
with pd.option_context('io.parquet.engine', 'fastparquet'):
check_round_trip(df_compat)
def test_options_auto(df_compat, fp, pa):
# use the set option
with pd.option_context('io.parquet.engine', 'auto'):
check_round_trip(df_compat)
def test_options_get_engine(fp, pa):
assert isinstance(get_engine('pyarrow'), PyArrowImpl)
assert isinstance(get_engine('fastparquet'), FastParquetImpl)
with pd.option_context('io.parquet.engine', 'pyarrow'):
assert isinstance(get_engine('auto'), PyArrowImpl)
assert isinstance(get_engine('pyarrow'), PyArrowImpl)
assert isinstance(get_engine('fastparquet'), FastParquetImpl)
with pd.option_context('io.parquet.engine', 'fastparquet'):
assert isinstance(get_engine('auto'), FastParquetImpl)
assert isinstance(get_engine('pyarrow'), PyArrowImpl)
assert isinstance(get_engine('fastparquet'), FastParquetImpl)
with pd.option_context('io.parquet.engine', 'auto'):
assert isinstance(get_engine('auto'), PyArrowImpl)
assert isinstance(get_engine('pyarrow'), PyArrowImpl)
assert isinstance(get_engine('fastparquet'), FastParquetImpl)
@pytest.mark.xfail(is_platform_windows() or is_platform_mac(),
reason="reading pa metadata failing on Windows/mac",
strict=True)
def test_cross_engine_pa_fp(df_cross_compat, pa, fp):
# cross-compat with differing reading/writing engines
df = df_cross_compat
with tm.ensure_clean() as path:
df.to_parquet(path, engine=pa, compression=None)
result = read_parquet(path, engine=fp)
tm.assert_frame_equal(result, df)
result = read_parquet(path, engine=fp, columns=['a', 'd'])
tm.assert_frame_equal(result, df[['a', 'd']])
def test_cross_engine_fp_pa(df_cross_compat, pa, fp):
# cross-compat with differing reading/writing engines
df = df_cross_compat
with tm.ensure_clean() as path:
df.to_parquet(path, engine=fp, compression=None)
with catch_warnings(record=True):
result = read_parquet(path, engine=pa)
tm.assert_frame_equal(result, df)
result = read_parquet(path, engine=pa, columns=['a', 'd'])
tm.assert_frame_equal(result, df[['a', 'd']])
class Base(object):
def check_error_on_write(self, df, engine, exc):
# check that we are raising the exception on writing
with tm.ensure_clean() as path:
with pytest.raises(exc):
to_parquet(df, path, engine, compression=None)
class TestBasic(Base):
def test_error(self, engine):
for obj in [pd.Series([1, 2, 3]), 1, 'foo', pd.Timestamp('20130101'),
np.array([1, 2, 3])]:
self.check_error_on_write(obj, engine, ValueError)
def test_columns_dtypes(self, engine):
df = pd.DataFrame({'string': list('abc'),
'int': list(range(1, 4))})
# unicode
df.columns = [u'foo', u'bar']
check_round_trip(df, engine)
def test_columns_dtypes_invalid(self, engine):
df = pd.DataFrame({'string': list('abc'),
'int': list(range(1, 4))})
# numeric
df.columns = [0, 1]
self.check_error_on_write(df, engine, ValueError)
if PY3:
# bytes on PY3, on PY2 these are str
df.columns = [b'foo', b'bar']
self.check_error_on_write(df, engine, ValueError)
# python object
df.columns = [datetime.datetime(2011, 1, 1, 0, 0),
datetime.datetime(2011, 1, 1, 1, 1)]
self.check_error_on_write(df, engine, ValueError)
@pytest.mark.parametrize('compression', [None, 'gzip', 'snappy', 'brotli'])
def test_compression(self, engine, compression):
if compression == 'snappy':
pytest.importorskip('snappy')
elif compression == 'brotli':
pytest.importorskip('brotli')
df = pd.DataFrame({'A': [1, 2, 3]})
check_round_trip(df, engine, write_kwargs={'compression': compression})
def test_read_columns(self, engine):
# GH18154
df = pd.DataFrame({'string': list('abc'),
'int': list(range(1, 4))})
expected = pd.DataFrame({'string': list('abc')})
check_round_trip(df, engine, expected=expected,
read_kwargs={'columns': ['string']})
def test_write_index(self, engine):
check_names = engine != 'fastparquet'
if engine == 'pyarrow':
import pyarrow
if LooseVersion(pyarrow.__version__) < LooseVersion('0.7.0'):
pytest.skip("pyarrow is < 0.7.0")
df = pd.DataFrame({'A': [1, 2, 3]})
check_round_trip(df, engine)
indexes = [
[2, 3, 4],
pd.date_range('20130101', periods=3),
list('abc'),
[1, 3, 4],
]
# non-default index
for index in indexes:
df.index = index
check_round_trip(df, engine, check_names=check_names)
# index with meta-data
df.index = [0, 1, 2]
df.index.name = 'foo'
check_round_trip(df, engine)
def test_write_multiindex(self, pa_ge_070):
# Not suppoprted in fastparquet as of 0.1.3 or older pyarrow version
engine = pa_ge_070
df = pd.DataFrame({'A': [1, 2, 3]})
index = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)])
df.index = index
check_round_trip(df, engine)
def test_write_column_multiindex(self, engine):
# column multi-index
mi_columns = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)])
df = pd.DataFrame(np.random.randn(4, 3), columns=mi_columns)
self.check_error_on_write(df, engine, ValueError)
def test_multiindex_with_columns(self, pa_ge_070):
engine = pa_ge_070
dates = pd.date_range('01-Jan-2018', '01-Dec-2018', freq='MS')
df = pd.DataFrame(np.random.randn(2 * len(dates), 3),
columns=list('ABC'))
index1 = pd.MultiIndex.from_product(
[['Level1', 'Level2'], dates],
names=['level', 'date'])
index2 = index1.copy(names=None)
for index in [index1, index2]:
df.index = index
check_round_trip(df, engine)
check_round_trip(df, engine, read_kwargs={'columns': ['A', 'B']},
expected=df[['A', 'B']])
def test_write_ignoring_index(self, engine):
# ENH 20768
# Ensure index=False omits the index from the written Parquet file.
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['q', 'r', 's']})
write_kwargs = {
'compression': None,
'index': False,
}
# Because we're dropping the index, we expect the loaded dataframe to
# have the default integer index.
expected = df.reset_index(drop=True)
check_round_trip(df, engine, write_kwargs=write_kwargs,
expected=expected)
# Ignore custom index
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['q', 'r', 's']},
index=['zyx', 'wvu', 'tsr'])
check_round_trip(df, engine, write_kwargs=write_kwargs,
expected=expected)
# Ignore multi-indexes as well.
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
df = pd.DataFrame({'one': [i for i in range(8)],
'two': [-i for i in range(8)]}, index=arrays)
expected = df.reset_index(drop=True)
check_round_trip(df, engine, write_kwargs=write_kwargs,
expected=expected)
class TestParquetPyArrow(Base):
def test_basic(self, pa, df_full):
df = df_full
# additional supported types for pyarrow
import pyarrow
if LooseVersion(pyarrow.__version__) >= LooseVersion('0.7.0'):
df['datetime_tz'] = pd.date_range('20130101', periods=3,
tz='Europe/Brussels')
df['bool_with_none'] = [True, None, True]
check_round_trip(df, pa)
# TODO: This doesn't fail on all systems; track down which
@pytest.mark.xfail(reason="pyarrow fails on this (ARROW-1883)")
def test_basic_subset_columns(self, pa, df_full):
# GH18628
df = df_full
# additional supported types for pyarrow
df['datetime_tz'] = pd.date_range('20130101', periods=3,
tz='Europe/Brussels')
check_round_trip(df, pa, expected=df[['string', 'int']],
read_kwargs={'columns': ['string', 'int']})
def test_duplicate_columns(self, pa):
# not currently able to handle duplicate columns
df = pd.DataFrame(np.arange(12).reshape(4, 3),
columns=list('aaa')).copy()
self.check_error_on_write(df, pa, ValueError)
@pytest.mark.xfail(reason="failing for pyarrow < 0.11.0")
def test_unsupported(self, pa):
# period
df = pd.DataFrame({'a': pd.period_range('2013', freq='M', periods=3)})
# pyarrow 0.11 raises ArrowTypeError
# older pyarrows raise ArrowInvalid
self.check_error_on_write(df, pa, Exception)
# timedelta
df = pd.DataFrame({'a': pd.timedelta_range('1 day',
periods=3)})
self.check_error_on_write(df, pa, NotImplementedError)
# mixed python objects
df = pd.DataFrame({'a': ['a', 1, 2.0]})
# pyarrow 0.11 raises ArrowTypeError
# older pyarrows raise ArrowInvalid
self.check_error_on_write(df, pa, Exception)
def test_categorical(self, pa_ge_070):
pa = pa_ge_070
# supported in >= 0.7.0
df = pd.DataFrame({'a': pd.Categorical(list('abc'))})
# de-serialized as object
expected = df.assign(a=df.a.astype(object))
check_round_trip(df, pa, expected=expected)
def test_categorical_unsupported(self, pa_lt_070):
pa = pa_lt_070
# supported in >= 0.7.0
df = pd.DataFrame({'a': pd.Categorical(list('abc'))})
self.check_error_on_write(df, pa, NotImplementedError)
def test_s3_roundtrip(self, df_compat, s3_resource, pa):
# GH #19134
check_round_trip(df_compat, pa,
path='s3://pandas-test/pyarrow.parquet')
def test_partition_cols_supported(self, pa_ge_070, df_full):
# GH #23283
partition_cols = ['bool', 'int']
df = df_full
with tm.ensure_clean_dir() as path:
df.to_parquet(path, partition_cols=partition_cols,
compression=None)
import pyarrow.parquet as pq
dataset = pq.ParquetDataset(path, validate_schema=False)
assert len(dataset.partitions.partition_names) == 2
assert dataset.partitions.partition_names == set(partition_cols)
def test_ignore_partition_cols_lt_070(self, pa_lt_070, df_full):
# GH #23283
partition_cols = ['bool', 'int']
pa = pa_lt_070
df = df_full
check_round_trip(df, pa,
write_kwargs={'partition_cols': partition_cols})
class TestParquetFastParquet(Base):
def test_basic(self, fp, df_full):
df = df_full
# additional supported types for fastparquet
if LooseVersion(fastparquet.__version__) >= LooseVersion('0.1.4'):
df['datetime_tz'] = pd.date_range('20130101', periods=3,
tz='US/Eastern')
df['timedelta'] = pd.timedelta_range('1 day', periods=3)
check_round_trip(df, fp)
@pytest.mark.skip(reason="not supported")
def test_duplicate_columns(self, fp):
# not currently able to handle duplicate columns
df = pd.DataFrame(np.arange(12).reshape(4, 3),
columns=list('aaa')).copy()
self.check_error_on_write(df, fp, ValueError)
def test_bool_with_none(self, fp):
df = pd.DataFrame({'a': [True, None, False]})
expected = pd.DataFrame({'a': [1.0, np.nan, 0.0]}, dtype='float16')
check_round_trip(df, fp, expected=expected)
def test_unsupported(self, fp):
# period
df = pd.DataFrame({'a': pd.period_range('2013', freq='M', periods=3)})
self.check_error_on_write(df, fp, ValueError)
# mixed
df = pd.DataFrame({'a': ['a', 1, 2.0]})
self.check_error_on_write(df, fp, ValueError)
def test_categorical(self, fp):
if LooseVersion(fastparquet.__version__) < LooseVersion("0.1.3"):
pytest.skip("CategoricalDtype not supported for older fp")
df = pd.DataFrame({'a': pd.Categorical(list('abc'))})
check_round_trip(df, fp)
def test_datetime_tz(self, fp_lt_014):
# fastparquet<0.1.4 doesn't preserve tz
df = pd.DataFrame({'a': pd.date_range('20130101', periods=3,
tz='US/Eastern')})
# warns on the coercion
with catch_warnings(record=True):
check_round_trip(df, fp_lt_014,
expected=df.astype('datetime64[ns]'))
def test_filter_row_groups(self, fp):
d = {'a': list(range(0, 3))}
df = pd.DataFrame(d)
with tm.ensure_clean() as path:
df.to_parquet(path, fp, compression=None,
row_group_offsets=1)
result = read_parquet(path, fp, filters=[('a', '==', 0)])
assert len(result) == 1
def test_s3_roundtrip(self, df_compat, s3_resource, fp):
# GH #19134
check_round_trip(df_compat, fp,
path='s3://pandas-test/fastparquet.parquet')
def test_partition_cols_supported(self, fp, df_full):
# GH #23283
partition_cols = ['bool', 'int']
df = df_full
with tm.ensure_clean_dir() as path:
df.to_parquet(path, partition_cols=partition_cols,
compression=None)
assert os.path.exists(path)
import fastparquet
actual_partition_cols = fastparquet.ParquetFile(path, False).cats
assert len(actual_partition_cols) == 2