|
| 1 | +// https://leetcode.com/problems/maximal-square |
| 2 | +// T: O(m * n) |
| 3 | +// S: O(m * n) |
| 4 | + |
| 5 | +public class MaximalSquare { |
| 6 | + public int maximalSquare(char[][] matrix) { |
| 7 | + final int rows = matrix.length, columns = matrix[0].length; |
| 8 | + final int[][] dp = new int[rows][columns]; |
| 9 | + |
| 10 | + assignFirstRowInDPMatrix(dp, matrix); |
| 11 | + assignFirstColumnInDPMatrix(dp, matrix); |
| 12 | + |
| 13 | + int maxSideLen = contains1(dp) ? 1 : 0; |
| 14 | + |
| 15 | + for (int row = 1 ; row < rows ; row++) { |
| 16 | + for (int column = 1 ; column < columns ; column++) { |
| 17 | + if (isOne(matrix[row][column])) { |
| 18 | + dp[row][column] = min(dp[row - 1][column], dp[row][column - 1], dp[row - 1][column - 1]) + 1; |
| 19 | + } else dp[row][column] = 0; |
| 20 | + maxSideLen = Math.max(maxSideLen, dp[row][column]); |
| 21 | + } |
| 22 | + } |
| 23 | + |
| 24 | + return maxSideLen * maxSideLen; |
| 25 | + } |
| 26 | + |
| 27 | + private boolean contains1(int[][] dp) { |
| 28 | + return contains1InFirstRow(dp) || contains1InFirstColumn(dp); |
| 29 | + } |
| 30 | + |
| 31 | + private boolean contains1InFirstRow(int[][] dp) { |
| 32 | + for (int element : dp[0]) { |
| 33 | + if (element == 1) return true; |
| 34 | + } |
| 35 | + return false; |
| 36 | + } |
| 37 | + |
| 38 | + private boolean contains1InFirstColumn(int[][] dp) { |
| 39 | + for (int[] row : dp) { |
| 40 | + if (row[0] == 1) return true; |
| 41 | + } |
| 42 | + return false; |
| 43 | + } |
| 44 | + |
| 45 | + private boolean isOne(char character) { |
| 46 | + return character == '1'; |
| 47 | + } |
| 48 | + |
| 49 | + private int min(int a, int b, int c) { |
| 50 | + return Math.min(a, Math.min(b, c)); |
| 51 | + } |
| 52 | + |
| 53 | + private void assignFirstRowInDPMatrix(int[][] dp, char[][] matrix) { |
| 54 | + for (int column = 0 ; column < matrix[0].length ; column++) { |
| 55 | + dp[0][column] = matrix[0][column] - '0'; |
| 56 | + } |
| 57 | + } |
| 58 | + |
| 59 | + private void assignFirstColumnInDPMatrix(int[][] dp, char[][] matrix) { |
| 60 | + for (int row = 0 ; row < matrix.length ; row++) { |
| 61 | + dp[row][0] = matrix[row][0] - '0'; |
| 62 | + } |
| 63 | + } |
| 64 | +} |
0 commit comments