32
32
33
33
object_index/index
34
34
35
- Core notebooks
36
- --------------
37
-
38
- .. grid:: 1 2 3 3
39
- :gutter: 4
40
-
41
- .. grid-item-card:: Introductory Overview of PyMC
42
- :img-top: https://raw.githubusercontent.com/pymc-devs/brand/main/pymc/pymc_logos/PyMC_square.svg
43
- :link: pymc:pymc_overview
44
- :link-type: ref
45
- :shadow: none
46
-
47
- .. grid-item-card:: GLM: Linear regression
48
- :img-top: ../_thumbnails/core_notebooks/glm_linear.png
49
- :link: pymc:glm_linear
50
- :link-type: ref
51
- :shadow: none
52
-
53
- .. grid-item-card:: Model Comparison
54
- :img-top: ../_thumbnails/core_notebooks/model_comparison.png
55
- :link: pymc:model_comparison
56
- :link-type: ref
57
- :shadow: none
58
-
59
- .. grid-item-card:: Prior and Posterior Predictive Checks
60
- :img-top: ../_thumbnails/core_notebooks/posterior_predictive.png
61
- :link: pymc:posterior_predictive
62
- :link-type: ref
63
- :shadow: none
64
-
65
- .. grid-item-card:: Distribution Dimensionality
66
- :img-top: ../_thumbnails/core_notebooks/dimensionality.png
67
- :link: pymc:dimensionality
68
- :link-type: ref
69
- :shadow: none
70
-
71
- .. grid-item-card:: PyMC and PyTensor
72
- :img-top: ../_thumbnails/core_notebooks/pytensor_pymc.png
73
- :link: pymc:pymc_pytensor
74
- :link-type: ref
75
- :shadow: none
76
-
77
35
"""
78
36
79
37
SECTION_TEMPLATE = """
88
46
"""
89
47
90
48
ITEM_TEMPLATE = """
91
- .. grid-item-card:: :doc:`{doc_reference }`
49
+ .. grid-item-card:: :doc:`{doc_name }`
92
50
:img-top: {image}
93
51
:link: {doc_reference}
94
- :link-type: doc
52
+ :link-type: {link_type}
95
53
:shadow: none
96
54
"""
97
55
56
+ intro_nb = {
57
+ "doc_name" : "General Overview" ,
58
+ "image" : "https://raw.githubusercontent.com/pymc-devs/brand/main/pymc/pymc_logos/PyMC_square.svg" ,
59
+ "doc_reference" : "pymc:pymc_overview" ,
60
+ "link_type" : "ref" ,
61
+ }
62
+
63
+ glm_nb = {
64
+ "doc_name" : "Simple Linear Regression" ,
65
+ "image" : "../_thumbnails/core_notebooks/glm_linear.png" ,
66
+ "doc_reference" : "pymc:glm_linear" ,
67
+ "link_type" : "ref" ,
68
+ }
69
+
70
+ model_comparison_nb = {
71
+ "doc_name" : "Model Comparison" ,
72
+ "image" : "../_thumbnails/core_notebooks/posterior_predictive.png" ,
73
+ "doc_reference" : "pymc:model_comparison" ,
74
+ "link_type" : "ref" ,
75
+ }
76
+
77
+ prior_pred_nb = {
78
+ "doc_name" : "Prior and Posterior Predictive Checks" ,
79
+ "image" : "../_thumbnails/core_notebooks/model_comparison.png" ,
80
+ "doc_reference" : "pymc:posterior_predictive" ,
81
+ "link_type" : "ref" ,
82
+ }
83
+
84
+ dimensionality_nb = {
85
+ "doc_name" : "Distribution Dimensionality" ,
86
+ "image" : "../_thumbnails/core_notebooks/dimensionality.png" ,
87
+ "doc_reference" : "pymc:dimensionality" ,
88
+ "link_type" : "ref" ,
89
+ }
90
+
91
+ pytensor_nb = {
92
+ "doc_name" : "PyMC and PyTensor" ,
93
+ "image" : "../_thumbnails/core_notebooks/pytensor_pymc.png" ,
94
+ "doc_reference" : "pymc:pymc_pytensor" ,
95
+ "link_type" : "ref" ,
96
+ }
97
+
98
+ external_nbs = {
99
+ "introductory" : [intro_nb , glm_nb ],
100
+ "fundamentals" : [dimensionality_nb , pytensor_nb ],
101
+ "howto" : [prior_pred_nb , model_comparison_nb ],
102
+ }
103
+
98
104
folder_title_map = {
105
+ "introductory" : "Introductory" ,
106
+ "fundamentals" : "Library Fundamentals" ,
99
107
"generalized_linear_models" : "(Generalized) Linear and Hierarchical Linear Models" ,
100
108
"case_studies" : "Case Studies" ,
101
109
"causal_inference" : "Causal Inference" ,
@@ -185,7 +193,6 @@ def main(app):
185
193
file = [HEAD ]
186
194
187
195
for folder , title in folder_title_map .items ():
188
- nb_paths = glob (f"{ folder } /*.ipynb" )
189
196
file .append (
190
197
SECTION_TEMPLATE .format (
191
198
section_title = title , section_id = folder , underlines = "-" * len (title )
@@ -195,12 +202,27 @@ def main(app):
195
202
if not os .path .isdir (target_dir ):
196
203
os .mkdir (target_dir )
197
204
205
+ if folder in external_nbs .keys ():
206
+ for descr in external_nbs [folder ]:
207
+ file .append (
208
+ ITEM_TEMPLATE .format (
209
+ doc_name = descr ["doc_name" ],
210
+ image = descr ["image" ],
211
+ doc_reference = descr ["doc_reference" ],
212
+ link_type = descr ["link_type" ],
213
+ )
214
+ )
215
+
216
+ nb_paths = glob (f"{ folder } /*.ipynb" )
198
217
for nb_path in nb_paths :
199
218
nbg = NotebookGenerator (nb_path , ".." , folder )
200
219
nbg .gen_previews ()
201
220
file .append (
202
221
ITEM_TEMPLATE .format (
203
- doc_reference = os .path .join (folder , nbg .stripped_name ), image = nbg .png_path
222
+ doc_name = os .path .join (folder , nbg .stripped_name ),
223
+ image = nbg .png_path ,
224
+ doc_reference = os .path .join (folder , nbg .stripped_name ),
225
+ link_type = "doc" ,
204
226
)
205
227
)
206
228
0 commit comments