forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_alter_axes.py
1134 lines (910 loc) · 42.9 KB
/
test_alter_axes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
from __future__ import print_function
import inspect
import pytest
from datetime import datetime, timedelta
import numpy as np
from pandas.compat import lrange, PY2
from pandas import (DataFrame, Series, Index, MultiIndex,
RangeIndex, date_range, IntervalIndex,
to_datetime)
from pandas.core.dtypes.common import (
is_object_dtype,
is_categorical_dtype,
is_interval_dtype)
import pandas as pd
from pandas.util.testing import assert_series_equal, assert_frame_equal
import pandas.util.testing as tm
from pandas.tests.frame.common import TestData
class TestDataFrameAlterAxes(TestData):
def test_set_index(self):
idx = Index(np.arange(len(self.mixed_frame)))
# cache it
_ = self.mixed_frame['foo'] # noqa
self.mixed_frame.index = idx
assert self.mixed_frame['foo'].index is idx
with tm.assert_raises_regex(ValueError, 'Length mismatch'):
self.mixed_frame.index = idx[::2]
def test_set_index_cast(self):
# issue casting an index then set_index
df = DataFrame({'A': [1.1, 2.2, 3.3], 'B': [5.0, 6.1, 7.2]},
index=[2010, 2011, 2012])
expected = df.loc[2010]
new_index = df.index.astype(np.int32)
df.index = new_index
result = df.loc[2010]
assert_series_equal(result, expected)
def test_set_index2(self):
df = DataFrame({'A': ['foo', 'foo', 'foo', 'bar', 'bar'],
'B': ['one', 'two', 'three', 'one', 'two'],
'C': ['a', 'b', 'c', 'd', 'e'],
'D': np.random.randn(5),
'E': np.random.randn(5)})
# new object, single-column
result = df.set_index('C')
result_nodrop = df.set_index('C', drop=False)
index = Index(df['C'], name='C')
expected = df.loc[:, ['A', 'B', 'D', 'E']]
expected.index = index
expected_nodrop = df.copy()
expected_nodrop.index = index
assert_frame_equal(result, expected)
assert_frame_equal(result_nodrop, expected_nodrop)
assert result.index.name == index.name
# inplace, single
df2 = df.copy()
df2.set_index('C', inplace=True)
assert_frame_equal(df2, expected)
df3 = df.copy()
df3.set_index('C', drop=False, inplace=True)
assert_frame_equal(df3, expected_nodrop)
# create new object, multi-column
result = df.set_index(['A', 'B'])
result_nodrop = df.set_index(['A', 'B'], drop=False)
index = MultiIndex.from_arrays([df['A'], df['B']], names=['A', 'B'])
expected = df.loc[:, ['C', 'D', 'E']]
expected.index = index
expected_nodrop = df.copy()
expected_nodrop.index = index
assert_frame_equal(result, expected)
assert_frame_equal(result_nodrop, expected_nodrop)
assert result.index.names == index.names
# inplace
df2 = df.copy()
df2.set_index(['A', 'B'], inplace=True)
assert_frame_equal(df2, expected)
df3 = df.copy()
df3.set_index(['A', 'B'], drop=False, inplace=True)
assert_frame_equal(df3, expected_nodrop)
# corner case
with tm.assert_raises_regex(ValueError,
'Index has duplicate keys'):
df.set_index('A', verify_integrity=True)
# append
result = df.set_index(['A', 'B'], append=True)
xp = df.reset_index().set_index(['index', 'A', 'B'])
xp.index.names = [None, 'A', 'B']
assert_frame_equal(result, xp)
# append to existing multiindex
rdf = df.set_index(['A'], append=True)
rdf = rdf.set_index(['B', 'C'], append=True)
expected = df.set_index(['A', 'B', 'C'], append=True)
assert_frame_equal(rdf, expected)
# Series
result = df.set_index(df.C)
assert result.index.name == 'C'
@pytest.mark.parametrize('level', ['a', pd.Series(range(3), name='a')])
def test_set_index_duplicate_names(self, level):
# GH18872
df = pd.DataFrame(np.arange(8).reshape(4, 2), columns=['a', 'b'])
# Pass an existing level name:
df.index.name = 'a'
pytest.raises(ValueError, df.set_index, level, append=True)
pytest.raises(ValueError, df.set_index, [level], append=True)
# Pass twice the same level name:
df.index.name = 'c'
pytest.raises(ValueError, df.set_index, [level, level])
def test_set_index_nonuniq(self):
df = DataFrame({'A': ['foo', 'foo', 'foo', 'bar', 'bar'],
'B': ['one', 'two', 'three', 'one', 'two'],
'C': ['a', 'b', 'c', 'd', 'e'],
'D': np.random.randn(5),
'E': np.random.randn(5)})
with tm.assert_raises_regex(ValueError,
'Index has duplicate keys'):
df.set_index('A', verify_integrity=True, inplace=True)
assert 'A' in df
def test_set_index_bug(self):
# GH1590
df = DataFrame({'val': [0, 1, 2], 'key': ['a', 'b', 'c']})
xp = DataFrame({'val': [1, 2]},
Index(['b', 'c'], name='key'))
df2 = df.loc[df.index.map(lambda indx: indx >= 1)]
rs = df2.set_index('key')
assert_frame_equal(rs, xp)
def test_set_index_pass_arrays(self):
df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'three',
'two', 'two', 'one', 'three'],
'C': np.random.randn(8),
'D': np.random.randn(8)})
# multiple columns
result = df.set_index(['A', df['B'].values], drop=False)
expected = df.set_index(['A', 'B'], drop=False)
# TODO should set_index check_names ?
assert_frame_equal(result, expected, check_names=False)
def test_construction_with_categorical_index(self):
ci = tm.makeCategoricalIndex(10)
# with Categorical
df = DataFrame({'A': np.random.randn(10),
'B': ci.values})
idf = df.set_index('B')
str(idf)
tm.assert_index_equal(idf.index, ci, check_names=False)
assert idf.index.name == 'B'
# from a CategoricalIndex
df = DataFrame({'A': np.random.randn(10),
'B': ci})
idf = df.set_index('B')
str(idf)
tm.assert_index_equal(idf.index, ci, check_names=False)
assert idf.index.name == 'B'
idf = df.set_index('B').reset_index().set_index('B')
str(idf)
tm.assert_index_equal(idf.index, ci, check_names=False)
assert idf.index.name == 'B'
new_df = idf.reset_index()
new_df.index = df.B
tm.assert_index_equal(new_df.index, ci, check_names=False)
assert idf.index.name == 'B'
def test_set_index_cast_datetimeindex(self):
df = DataFrame({'A': [datetime(2000, 1, 1) + timedelta(i)
for i in range(1000)],
'B': np.random.randn(1000)})
idf = df.set_index('A')
assert isinstance(idf.index, pd.DatetimeIndex)
# don't cast a DatetimeIndex WITH a tz, leave as object
# GH 6032
i = (pd.DatetimeIndex(
to_datetime(['2013-1-1 13:00',
'2013-1-2 14:00'], errors="raise"))
.tz_localize('US/Pacific'))
df = DataFrame(np.random.randn(2, 1), columns=['A'])
expected = Series(np.array([pd.Timestamp('2013-01-01 13:00:00-0800',
tz='US/Pacific'),
pd.Timestamp('2013-01-02 14:00:00-0800',
tz='US/Pacific')],
dtype="object"))
# convert index to series
result = Series(i)
assert_series_equal(result, expected)
# assignt to frame
df['B'] = i
result = df['B']
assert_series_equal(result, expected, check_names=False)
assert result.name == 'B'
# keep the timezone
result = i.to_series(keep_tz=True)
assert_series_equal(result.reset_index(drop=True), expected)
# convert to utc
df['C'] = i.to_series().reset_index(drop=True)
result = df['C']
comp = pd.DatetimeIndex(expected.values).copy()
comp.tz = None
tm.assert_numpy_array_equal(result.values, comp.values)
# list of datetimes with a tz
df['D'] = i.to_pydatetime()
result = df['D']
assert_series_equal(result, expected, check_names=False)
assert result.name == 'D'
# GH 6785
# set the index manually
import pytz
df = DataFrame(
[{'ts': datetime(2014, 4, 1, tzinfo=pytz.utc), 'foo': 1}])
expected = df.set_index('ts')
df.index = df['ts']
df.pop('ts')
assert_frame_equal(df, expected)
def test_reset_index_tz(self, tz_aware_fixture):
# GH 3950
# reset_index with single level
tz = tz_aware_fixture
idx = pd.date_range('1/1/2011', periods=5,
freq='D', tz=tz, name='idx')
df = pd.DataFrame(
{'a': range(5), 'b': ['A', 'B', 'C', 'D', 'E']}, index=idx)
expected = pd.DataFrame({'idx': [datetime(2011, 1, 1),
datetime(2011, 1, 2),
datetime(2011, 1, 3),
datetime(2011, 1, 4),
datetime(2011, 1, 5)],
'a': range(5),
'b': ['A', 'B', 'C', 'D', 'E']},
columns=['idx', 'a', 'b'])
expected['idx'] = expected['idx'].apply(
lambda d: pd.Timestamp(d, tz=tz))
assert_frame_equal(df.reset_index(), expected)
def test_set_index_timezone(self):
# GH 12358
# tz-aware Series should retain the tz
i = pd.to_datetime(["2014-01-01 10:10:10"],
utc=True).tz_convert('Europe/Rome')
df = DataFrame({'i': i})
assert df.set_index(i).index[0].hour == 11
assert pd.DatetimeIndex(pd.Series(df.i))[0].hour == 11
assert df.set_index(df.i).index[0].hour == 11
def test_set_index_dst(self):
di = pd.date_range('2006-10-29 00:00:00', periods=3,
freq='H', tz='US/Pacific')
df = pd.DataFrame(data={'a': [0, 1, 2], 'b': [3, 4, 5]},
index=di).reset_index()
# single level
res = df.set_index('index')
exp = pd.DataFrame(data={'a': [0, 1, 2], 'b': [3, 4, 5]},
index=pd.Index(di, name='index'))
tm.assert_frame_equal(res, exp)
# GH 12920
res = df.set_index(['index', 'a'])
exp_index = pd.MultiIndex.from_arrays([di, [0, 1, 2]],
names=['index', 'a'])
exp = pd.DataFrame({'b': [3, 4, 5]}, index=exp_index)
tm.assert_frame_equal(res, exp)
def test_reset_index_with_intervals(self):
idx = pd.IntervalIndex.from_breaks(np.arange(11), name='x')
original = pd.DataFrame({'x': idx, 'y': np.arange(10)})[['x', 'y']]
result = original.set_index('x')
expected = pd.DataFrame({'y': np.arange(10)}, index=idx)
assert_frame_equal(result, expected)
result2 = result.reset_index()
assert_frame_equal(result2, original)
def test_set_index_multiindexcolumns(self):
columns = MultiIndex.from_tuples([('foo', 1), ('foo', 2), ('bar', 1)])
df = DataFrame(np.random.randn(3, 3), columns=columns)
rs = df.set_index(df.columns[0])
xp = df.iloc[:, 1:]
xp.index = df.iloc[:, 0].values
xp.index.names = [df.columns[0]]
assert_frame_equal(rs, xp)
def test_set_index_empty_column(self):
# #1971
df = DataFrame([
dict(a=1, p=0),
dict(a=2, m=10),
dict(a=3, m=11, p=20),
dict(a=4, m=12, p=21)
], columns=('a', 'm', 'p', 'x'))
# it works!
result = df.set_index(['a', 'x'])
repr(result)
def test_set_columns(self):
cols = Index(np.arange(len(self.mixed_frame.columns)))
self.mixed_frame.columns = cols
with tm.assert_raises_regex(ValueError, 'Length mismatch'):
self.mixed_frame.columns = cols[::2]
def test_dti_set_index_reindex(self):
# GH 6631
df = DataFrame(np.random.random(6))
idx1 = date_range('2011/01/01', periods=6, freq='M', tz='US/Eastern')
idx2 = date_range('2013', periods=6, freq='A', tz='Asia/Tokyo')
df = df.set_index(idx1)
tm.assert_index_equal(df.index, idx1)
df = df.reindex(idx2)
tm.assert_index_equal(df.index, idx2)
# 11314
# with tz
index = date_range(datetime(2015, 10, 1),
datetime(2015, 10, 1, 23),
freq='H', tz='US/Eastern')
df = DataFrame(np.random.randn(24, 1), columns=['a'], index=index)
new_index = date_range(datetime(2015, 10, 2),
datetime(2015, 10, 2, 23),
freq='H', tz='US/Eastern')
# TODO: unused?
result = df.set_index(new_index) # noqa
assert new_index.freq == index.freq
# Renaming
def test_rename(self):
mapping = {
'A': 'a',
'B': 'b',
'C': 'c',
'D': 'd'
}
renamed = self.frame.rename(columns=mapping)
renamed2 = self.frame.rename(columns=str.lower)
assert_frame_equal(renamed, renamed2)
assert_frame_equal(renamed2.rename(columns=str.upper),
self.frame, check_names=False)
# index
data = {
'A': {'foo': 0, 'bar': 1}
}
# gets sorted alphabetical
df = DataFrame(data)
renamed = df.rename(index={'foo': 'bar', 'bar': 'foo'})
tm.assert_index_equal(renamed.index, pd.Index(['foo', 'bar']))
renamed = df.rename(index=str.upper)
tm.assert_index_equal(renamed.index, pd.Index(['BAR', 'FOO']))
# have to pass something
pytest.raises(TypeError, self.frame.rename)
# partial columns
renamed = self.frame.rename(columns={'C': 'foo', 'D': 'bar'})
tm.assert_index_equal(renamed.columns,
pd.Index(['A', 'B', 'foo', 'bar']))
# other axis
renamed = self.frame.T.rename(index={'C': 'foo', 'D': 'bar'})
tm.assert_index_equal(renamed.index,
pd.Index(['A', 'B', 'foo', 'bar']))
# index with name
index = Index(['foo', 'bar'], name='name')
renamer = DataFrame(data, index=index)
renamed = renamer.rename(index={'foo': 'bar', 'bar': 'foo'})
tm.assert_index_equal(renamed.index,
pd.Index(['bar', 'foo'], name='name'))
assert renamed.index.name == renamer.index.name
def test_rename_axis_inplace(self):
# GH 15704
frame = self.frame.copy()
expected = frame.rename_axis('foo')
result = frame.copy()
no_return = result.rename_axis('foo', inplace=True)
assert no_return is None
assert_frame_equal(result, expected)
expected = frame.rename_axis('bar', axis=1)
result = frame.copy()
no_return = result.rename_axis('bar', axis=1, inplace=True)
assert no_return is None
assert_frame_equal(result, expected)
def test_rename_axis_warns(self):
# https://github.com/pandas-dev/pandas/issues/17833
df = pd.DataFrame({"A": [1, 2], "B": [1, 2]})
with tm.assert_produces_warning(FutureWarning) as w:
df.rename_axis(id, axis=0)
assert 'rename' in str(w[0].message)
with tm.assert_produces_warning(FutureWarning) as w:
df.rename_axis({0: 10, 1: 20}, axis=0)
assert 'rename' in str(w[0].message)
with tm.assert_produces_warning(FutureWarning) as w:
df.rename_axis(id, axis=1)
assert 'rename' in str(w[0].message)
with tm.assert_produces_warning(FutureWarning) as w:
df['A'].rename_axis(id)
assert 'rename' in str(w[0].message)
def test_rename_multiindex(self):
tuples_index = [('foo1', 'bar1'), ('foo2', 'bar2')]
tuples_columns = [('fizz1', 'buzz1'), ('fizz2', 'buzz2')]
index = MultiIndex.from_tuples(tuples_index, names=['foo', 'bar'])
columns = MultiIndex.from_tuples(
tuples_columns, names=['fizz', 'buzz'])
df = DataFrame([(0, 0), (1, 1)], index=index, columns=columns)
#
# without specifying level -> across all levels
renamed = df.rename(index={'foo1': 'foo3', 'bar2': 'bar3'},
columns={'fizz1': 'fizz3', 'buzz2': 'buzz3'})
new_index = MultiIndex.from_tuples([('foo3', 'bar1'),
('foo2', 'bar3')],
names=['foo', 'bar'])
new_columns = MultiIndex.from_tuples([('fizz3', 'buzz1'),
('fizz2', 'buzz3')],
names=['fizz', 'buzz'])
tm.assert_index_equal(renamed.index, new_index)
tm.assert_index_equal(renamed.columns, new_columns)
assert renamed.index.names == df.index.names
assert renamed.columns.names == df.columns.names
#
# with specifying a level (GH13766)
# dict
new_columns = MultiIndex.from_tuples([('fizz3', 'buzz1'),
('fizz2', 'buzz2')],
names=['fizz', 'buzz'])
renamed = df.rename(columns={'fizz1': 'fizz3', 'buzz2': 'buzz3'},
level=0)
tm.assert_index_equal(renamed.columns, new_columns)
renamed = df.rename(columns={'fizz1': 'fizz3', 'buzz2': 'buzz3'},
level='fizz')
tm.assert_index_equal(renamed.columns, new_columns)
new_columns = MultiIndex.from_tuples([('fizz1', 'buzz1'),
('fizz2', 'buzz3')],
names=['fizz', 'buzz'])
renamed = df.rename(columns={'fizz1': 'fizz3', 'buzz2': 'buzz3'},
level=1)
tm.assert_index_equal(renamed.columns, new_columns)
renamed = df.rename(columns={'fizz1': 'fizz3', 'buzz2': 'buzz3'},
level='buzz')
tm.assert_index_equal(renamed.columns, new_columns)
# function
func = str.upper
new_columns = MultiIndex.from_tuples([('FIZZ1', 'buzz1'),
('FIZZ2', 'buzz2')],
names=['fizz', 'buzz'])
renamed = df.rename(columns=func, level=0)
tm.assert_index_equal(renamed.columns, new_columns)
renamed = df.rename(columns=func, level='fizz')
tm.assert_index_equal(renamed.columns, new_columns)
new_columns = MultiIndex.from_tuples([('fizz1', 'BUZZ1'),
('fizz2', 'BUZZ2')],
names=['fizz', 'buzz'])
renamed = df.rename(columns=func, level=1)
tm.assert_index_equal(renamed.columns, new_columns)
renamed = df.rename(columns=func, level='buzz')
tm.assert_index_equal(renamed.columns, new_columns)
# index
new_index = MultiIndex.from_tuples([('foo3', 'bar1'),
('foo2', 'bar2')],
names=['foo', 'bar'])
renamed = df.rename(index={'foo1': 'foo3', 'bar2': 'bar3'},
level=0)
tm.assert_index_equal(renamed.index, new_index)
def test_rename_nocopy(self):
renamed = self.frame.rename(columns={'C': 'foo'}, copy=False)
renamed['foo'] = 1.
assert (self.frame['C'] == 1.).all()
def test_rename_inplace(self):
self.frame.rename(columns={'C': 'foo'})
assert 'C' in self.frame
assert 'foo' not in self.frame
c_id = id(self.frame['C'])
frame = self.frame.copy()
frame.rename(columns={'C': 'foo'}, inplace=True)
assert 'C' not in frame
assert 'foo' in frame
assert id(frame['foo']) != c_id
def test_rename_bug(self):
# GH 5344
# rename set ref_locs, and set_index was not resetting
df = DataFrame({0: ['foo', 'bar'], 1: ['bah', 'bas'], 2: [1, 2]})
df = df.rename(columns={0: 'a'})
df = df.rename(columns={1: 'b'})
df = df.set_index(['a', 'b'])
df.columns = ['2001-01-01']
expected = DataFrame([[1], [2]],
index=MultiIndex.from_tuples(
[('foo', 'bah'), ('bar', 'bas')],
names=['a', 'b']),
columns=['2001-01-01'])
assert_frame_equal(df, expected)
def test_reorder_levels(self):
index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]],
labels=[[0, 0, 0, 0, 0, 0],
[0, 1, 2, 0, 1, 2],
[0, 1, 0, 1, 0, 1]],
names=['L0', 'L1', 'L2'])
df = DataFrame({'A': np.arange(6), 'B': np.arange(6)}, index=index)
# no change, position
result = df.reorder_levels([0, 1, 2])
assert_frame_equal(df, result)
# no change, labels
result = df.reorder_levels(['L0', 'L1', 'L2'])
assert_frame_equal(df, result)
# rotate, position
result = df.reorder_levels([1, 2, 0])
e_idx = MultiIndex(levels=[['one', 'two', 'three'], [0, 1], ['bar']],
labels=[[0, 1, 2, 0, 1, 2],
[0, 1, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 0]],
names=['L1', 'L2', 'L0'])
expected = DataFrame({'A': np.arange(6), 'B': np.arange(6)},
index=e_idx)
assert_frame_equal(result, expected)
def test_reset_index(self):
stacked = self.frame.stack()[::2]
stacked = DataFrame({'foo': stacked, 'bar': stacked})
names = ['first', 'second']
stacked.index.names = names
deleveled = stacked.reset_index()
for i, (lev, lab) in enumerate(zip(stacked.index.levels,
stacked.index.labels)):
values = lev.take(lab)
name = names[i]
tm.assert_index_equal(values, Index(deleveled[name]))
stacked.index.names = [None, None]
deleveled2 = stacked.reset_index()
tm.assert_series_equal(deleveled['first'], deleveled2['level_0'],
check_names=False)
tm.assert_series_equal(deleveled['second'], deleveled2['level_1'],
check_names=False)
# default name assigned
rdf = self.frame.reset_index()
exp = pd.Series(self.frame.index.values, name='index')
tm.assert_series_equal(rdf['index'], exp)
# default name assigned, corner case
df = self.frame.copy()
df['index'] = 'foo'
rdf = df.reset_index()
exp = pd.Series(self.frame.index.values, name='level_0')
tm.assert_series_equal(rdf['level_0'], exp)
# but this is ok
self.frame.index.name = 'index'
deleveled = self.frame.reset_index()
tm.assert_series_equal(deleveled['index'],
pd.Series(self.frame.index))
tm.assert_index_equal(deleveled.index,
pd.Index(np.arange(len(deleveled))))
# preserve column names
self.frame.columns.name = 'columns'
resetted = self.frame.reset_index()
assert resetted.columns.name == 'columns'
# only remove certain columns
frame = self.frame.reset_index().set_index(['index', 'A', 'B'])
rs = frame.reset_index(['A', 'B'])
# TODO should reset_index check_names ?
assert_frame_equal(rs, self.frame, check_names=False)
rs = frame.reset_index(['index', 'A', 'B'])
assert_frame_equal(rs, self.frame.reset_index(), check_names=False)
rs = frame.reset_index(['index', 'A', 'B'])
assert_frame_equal(rs, self.frame.reset_index(), check_names=False)
rs = frame.reset_index('A')
xp = self.frame.reset_index().set_index(['index', 'B'])
assert_frame_equal(rs, xp, check_names=False)
# test resetting in place
df = self.frame.copy()
resetted = self.frame.reset_index()
df.reset_index(inplace=True)
assert_frame_equal(df, resetted, check_names=False)
frame = self.frame.reset_index().set_index(['index', 'A', 'B'])
rs = frame.reset_index('A', drop=True)
xp = self.frame.copy()
del xp['A']
xp = xp.set_index(['B'], append=True)
assert_frame_equal(rs, xp, check_names=False)
def test_reset_index_level(self):
df = pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]],
columns=['A', 'B', 'C', 'D'])
for levels in ['A', 'B'], [0, 1]:
# With MultiIndex
result = df.set_index(['A', 'B']).reset_index(level=levels[0])
tm.assert_frame_equal(result, df.set_index('B'))
result = df.set_index(['A', 'B']).reset_index(level=levels[:1])
tm.assert_frame_equal(result, df.set_index('B'))
result = df.set_index(['A', 'B']).reset_index(level=levels)
tm.assert_frame_equal(result, df)
result = df.set_index(['A', 'B']).reset_index(level=levels,
drop=True)
tm.assert_frame_equal(result, df[['C', 'D']])
# With single-level Index (GH 16263)
result = df.set_index('A').reset_index(level=levels[0])
tm.assert_frame_equal(result, df)
result = df.set_index('A').reset_index(level=levels[:1])
tm.assert_frame_equal(result, df)
result = df.set_index(['A']).reset_index(level=levels[0],
drop=True)
tm.assert_frame_equal(result, df[['B', 'C', 'D']])
# Missing levels - for both MultiIndex and single-level Index:
for idx_lev in ['A', 'B'], ['A']:
with tm.assert_raises_regex(KeyError, 'Level E '):
df.set_index(idx_lev).reset_index(level=['A', 'E'])
with tm.assert_raises_regex(IndexError, 'Too many levels'):
df.set_index(idx_lev).reset_index(level=[0, 1, 2])
def test_reset_index_right_dtype(self):
time = np.arange(0.0, 10, np.sqrt(2) / 2)
s1 = Series((9.81 * time ** 2) / 2,
index=Index(time, name='time'),
name='speed')
df = DataFrame(s1)
resetted = s1.reset_index()
assert resetted['time'].dtype == np.float64
resetted = df.reset_index()
assert resetted['time'].dtype == np.float64
def test_reset_index_multiindex_col(self):
vals = np.random.randn(3, 3).astype(object)
idx = ['x', 'y', 'z']
full = np.hstack(([[x] for x in idx], vals))
df = DataFrame(vals, Index(idx, name='a'),
columns=[['b', 'b', 'c'], ['mean', 'median', 'mean']])
rs = df.reset_index()
xp = DataFrame(full, columns=[['a', 'b', 'b', 'c'],
['', 'mean', 'median', 'mean']])
assert_frame_equal(rs, xp)
rs = df.reset_index(col_fill=None)
xp = DataFrame(full, columns=[['a', 'b', 'b', 'c'],
['a', 'mean', 'median', 'mean']])
assert_frame_equal(rs, xp)
rs = df.reset_index(col_level=1, col_fill='blah')
xp = DataFrame(full, columns=[['blah', 'b', 'b', 'c'],
['a', 'mean', 'median', 'mean']])
assert_frame_equal(rs, xp)
df = DataFrame(vals,
MultiIndex.from_arrays([[0, 1, 2], ['x', 'y', 'z']],
names=['d', 'a']),
columns=[['b', 'b', 'c'], ['mean', 'median', 'mean']])
rs = df.reset_index('a', )
xp = DataFrame(full, Index([0, 1, 2], name='d'),
columns=[['a', 'b', 'b', 'c'],
['', 'mean', 'median', 'mean']])
assert_frame_equal(rs, xp)
rs = df.reset_index('a', col_fill=None)
xp = DataFrame(full, Index(lrange(3), name='d'),
columns=[['a', 'b', 'b', 'c'],
['a', 'mean', 'median', 'mean']])
assert_frame_equal(rs, xp)
rs = df.reset_index('a', col_fill='blah', col_level=1)
xp = DataFrame(full, Index(lrange(3), name='d'),
columns=[['blah', 'b', 'b', 'c'],
['a', 'mean', 'median', 'mean']])
assert_frame_equal(rs, xp)
def test_reset_index_multiindex_nan(self):
# GH6322, testing reset_index on MultiIndexes
# when we have a nan or all nan
df = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [0, 1, np.nan],
'C': np.random.rand(3)})
rs = df.set_index(['A', 'B']).reset_index()
assert_frame_equal(rs, df)
df = pd.DataFrame({'A': [np.nan, 'b', 'c'],
'B': [0, 1, 2],
'C': np.random.rand(3)})
rs = df.set_index(['A', 'B']).reset_index()
assert_frame_equal(rs, df)
df = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [0, 1, 2],
'C': [np.nan, 1.1, 2.2]})
rs = df.set_index(['A', 'B']).reset_index()
assert_frame_equal(rs, df)
df = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [np.nan, np.nan, np.nan],
'C': np.random.rand(3)})
rs = df.set_index(['A', 'B']).reset_index()
assert_frame_equal(rs, df)
def test_reset_index_with_datetimeindex_cols(self):
# GH5818
#
df = pd.DataFrame([[1, 2], [3, 4]],
columns=pd.date_range('1/1/2013', '1/2/2013'),
index=['A', 'B'])
result = df.reset_index()
expected = pd.DataFrame([['A', 1, 2], ['B', 3, 4]],
columns=['index', datetime(2013, 1, 1),
datetime(2013, 1, 2)])
assert_frame_equal(result, expected)
def test_reset_index_range(self):
# GH 12071
df = pd.DataFrame([[0, 0], [1, 1]], columns=['A', 'B'],
index=RangeIndex(stop=2))
result = df.reset_index()
assert isinstance(result.index, RangeIndex)
expected = pd.DataFrame([[0, 0, 0], [1, 1, 1]],
columns=['index', 'A', 'B'],
index=RangeIndex(stop=2))
assert_frame_equal(result, expected)
def test_set_index_names(self):
df = pd.util.testing.makeDataFrame()
df.index.name = 'name'
assert df.set_index(df.index).index.names == ['name']
mi = MultiIndex.from_arrays(df[['A', 'B']].T.values, names=['A', 'B'])
mi2 = MultiIndex.from_arrays(df[['A', 'B', 'A', 'B']].T.values,
names=['A', 'B', 'C', 'D'])
df = df.set_index(['A', 'B'])
assert df.set_index(df.index).index.names == ['A', 'B']
# Check that set_index isn't converting a MultiIndex into an Index
assert isinstance(df.set_index(df.index).index, MultiIndex)
# Check actual equality
tm.assert_index_equal(df.set_index(df.index).index, mi)
idx2 = df.index.rename(['C', 'D'])
# Check that [MultiIndex, MultiIndex] yields a MultiIndex rather
# than a pair of tuples
assert isinstance(df.set_index([df.index, idx2]).index, MultiIndex)
# Check equality
tm.assert_index_equal(df.set_index([df.index, idx2]).index, mi2)
def test_rename_objects(self):
renamed = self.mixed_frame.rename(columns=str.upper)
assert 'FOO' in renamed
assert 'foo' not in renamed
def test_rename_axis_style(self):
# https://github.com/pandas-dev/pandas/issues/12392
df = pd.DataFrame({"A": [1, 2], "B": [1, 2]}, index=['X', 'Y'])
expected = pd.DataFrame({"a": [1, 2], "b": [1, 2]}, index=['X', 'Y'])
result = df.rename(str.lower, axis=1)
assert_frame_equal(result, expected)
result = df.rename(str.lower, axis='columns')
assert_frame_equal(result, expected)
result = df.rename({"A": 'a', 'B': 'b'}, axis=1)
assert_frame_equal(result, expected)
result = df.rename({"A": 'a', 'B': 'b'}, axis='columns')
assert_frame_equal(result, expected)
# Index
expected = pd.DataFrame({"A": [1, 2], "B": [1, 2]}, index=['x', 'y'])
result = df.rename(str.lower, axis=0)
assert_frame_equal(result, expected)
result = df.rename(str.lower, axis='index')
assert_frame_equal(result, expected)
result = df.rename({'X': 'x', 'Y': 'y'}, axis=0)
assert_frame_equal(result, expected)
result = df.rename({'X': 'x', 'Y': 'y'}, axis='index')
assert_frame_equal(result, expected)
result = df.rename(mapper=str.lower, axis='index')
assert_frame_equal(result, expected)
def test_rename_mapper_multi(self):
df = pd.DataFrame({"A": ['a', 'b'], "B": ['c', 'd'],
'C': [1, 2]}).set_index(["A", "B"])
result = df.rename(str.upper)
expected = df.rename(index=str.upper)
assert_frame_equal(result, expected)
def test_rename_positional_named(self):
# https://github.com/pandas-dev/pandas/issues/12392
df = pd.DataFrame({"a": [1, 2], "b": [1, 2]}, index=['X', 'Y'])
result = df.rename(str.lower, columns=str.upper)
expected = pd.DataFrame({"A": [1, 2], "B": [1, 2]}, index=['x', 'y'])
assert_frame_equal(result, expected)
def test_rename_axis_style_raises(self):
# https://github.com/pandas-dev/pandas/issues/12392
df = pd.DataFrame({"A": [1, 2], "B": [1, 2]}, index=['0', '1'])
# Named target and axis
with tm.assert_raises_regex(TypeError, None):
df.rename(index=str.lower, axis=1)
with tm.assert_raises_regex(TypeError, None):
df.rename(index=str.lower, axis='columns')
with tm.assert_raises_regex(TypeError, None):
df.rename(index=str.lower, axis='columns')
with tm.assert_raises_regex(TypeError, None):
df.rename(columns=str.lower, axis='columns')
with tm.assert_raises_regex(TypeError, None):
df.rename(index=str.lower, axis=0)
# Multiple targets and axis
with tm.assert_raises_regex(TypeError, None):
df.rename(str.lower, str.lower, axis='columns')
# Too many targets
with tm.assert_raises_regex(TypeError, None):
df.rename(str.lower, str.lower, str.lower)
# Duplicates
with tm.assert_raises_regex(TypeError, "multiple values"):
df.rename(id, mapper=id)
def test_reindex_api_equivalence(self):
# equivalence of the labels/axis and index/columns API's
df = DataFrame([[1, 2, 3], [3, 4, 5], [5, 6, 7]],
index=['a', 'b', 'c'],
columns=['d', 'e', 'f'])
res1 = df.reindex(['b', 'a'])
res2 = df.reindex(index=['b', 'a'])
res3 = df.reindex(labels=['b', 'a'])
res4 = df.reindex(labels=['b', 'a'], axis=0)
res5 = df.reindex(['b', 'a'], axis=0)
for res in [res2, res3, res4, res5]:
tm.assert_frame_equal(res1, res)
res1 = df.reindex(columns=['e', 'd'])
res2 = df.reindex(['e', 'd'], axis=1)
res3 = df.reindex(labels=['e', 'd'], axis=1)
for res in [res2, res3]:
tm.assert_frame_equal(res1, res)
res1 = df.reindex(index=['b', 'a'], columns=['e', 'd'])
res2 = df.reindex(columns=['e', 'd'], index=['b', 'a'])
res3 = df.reindex(labels=['b', 'a'], axis=0).reindex(labels=['e', 'd'],
axis=1)
for res in [res2, res3]:
tm.assert_frame_equal(res1, res)
def test_rename_positional(self):
df = pd.DataFrame(columns=['A', 'B'])
with tm.assert_produces_warning(FutureWarning) as rec:
result = df.rename(None, str.lower)
expected = pd.DataFrame(columns=['a', 'b'])
assert_frame_equal(result, expected)
assert len(rec) == 1
message = str(rec[0].message)
assert 'rename' in message
assert 'Use named arguments' in message
def test_assign_columns(self):
self.frame['hi'] = 'there'
frame = self.frame.copy()
frame.columns = ['foo', 'bar', 'baz', 'quux', 'foo2']
assert_series_equal(self.frame['C'], frame['baz'], check_names=False)
assert_series_equal(self.frame['hi'], frame['foo2'], check_names=False)
def test_set_index_preserve_categorical_dtype(self):
# GH13743, GH13854
df = DataFrame({'A': [1, 2, 1, 1, 2],
'B': [10, 16, 22, 28, 34],
'C1': pd.Categorical(list("abaab"),
categories=list("bac"),
ordered=False),
'C2': pd.Categorical(list("abaab"),
categories=list("bac"),
ordered=True)})
for cols in ['C1', 'C2', ['A', 'C1'], ['A', 'C2'], ['C1', 'C2']]:
result = df.set_index(cols).reset_index()