forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrouper.py
688 lines (577 loc) · 22.8 KB
/
grouper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
"""
Provide user facing operators for doing the split part of the
split-apply-combine paradigm.
"""
from typing import Hashable, List, Optional, Tuple
import warnings
import numpy as np
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.common import (
ensure_categorical,
is_categorical_dtype,
is_datetime64_dtype,
is_hashable,
is_list_like,
is_scalar,
is_timedelta64_dtype,
)
from pandas.core.dtypes.generic import ABCSeries
from pandas._typing import FrameOrSeries
import pandas.core.algorithms as algorithms
from pandas.core.arrays import Categorical, ExtensionArray
import pandas.core.common as com
from pandas.core.frame import DataFrame
from pandas.core.groupby import ops
from pandas.core.groupby.categorical import recode_for_groupby, recode_from_groupby
from pandas.core.index import CategoricalIndex, Index, MultiIndex
from pandas.core.series import Series
from pandas.io.formats.printing import pprint_thing
class Grouper:
"""
A Grouper allows the user to specify a groupby instruction for a target
object.
This specification will select a column via the key parameter, or if the
level and/or axis parameters are given, a level of the index of the target
object.
If `axis` and/or `level` are passed as keywords to both `Grouper` and
`groupby`, the values passed to `Grouper` take precedence.
Parameters
----------
key : str, defaults to None
groupby key, which selects the grouping column of the target
level : name/number, defaults to None
the level for the target index
freq : str / frequency object, defaults to None
This will groupby the specified frequency if the target selection
(via key or level) is a datetime-like object. For full specification
of available frequencies, please see `here
<http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
axis : number/name of the axis, defaults to 0
sort : bool, default to False
whether to sort the resulting labels
closed : {'left' or 'right'}
Closed end of interval. Only when `freq` parameter is passed.
label : {'left' or 'right'}
Interval boundary to use for labeling.
Only when `freq` parameter is passed.
convention : {'start', 'end', 'e', 's'}
If grouper is PeriodIndex and `freq` parameter is passed.
base : int, default 0
Only when `freq` parameter is passed.
loffset : str, DateOffset, timedelta object
Only when `freq` parameter is passed.
Returns
-------
A specification for a groupby instruction
Examples
--------
Syntactic sugar for ``df.groupby('A')``
>>> df.groupby(Grouper(key='A'))
Specify a resample operation on the column 'date'
>>> df.groupby(Grouper(key='date', freq='60s'))
Specify a resample operation on the level 'date' on the columns axis
with a frequency of 60s
>>> df.groupby(Grouper(level='date', freq='60s', axis=1))
"""
_attributes: Tuple[str, ...] = ("key", "level", "freq", "axis", "sort")
def __new__(cls, *args, **kwargs):
if kwargs.get("freq") is not None:
from pandas.core.resample import TimeGrouper
cls = TimeGrouper
return super().__new__(cls)
def __init__(self, key=None, level=None, freq=None, axis=0, sort=False):
self.key = key
self.level = level
self.freq = freq
self.axis = axis
self.sort = sort
self._reset_grouper()
def _reset_grouper(self):
"""
Ensures Grouper object can be reused
See https://github.com/pandas-dev/pandas/issues/26564
"""
self.grouper = None
self.obj = None
self.indexer = None
self.binner = None
self._grouper = None
@property
def ax(self):
return self.grouper
def _get_grouper(self, obj, validate: bool = True):
"""
Parameters
----------
obj : the subject object
validate : boolean, default True
if True, validate the grouper
Returns
-------
a tuple of binner, grouper, obj (possibly sorted)
"""
self._set_grouper(obj)
self.grouper, exclusions, self.obj = get_grouper(
self.obj,
[self.key],
axis=self.axis,
level=self.level,
sort=self.sort,
validate=validate,
)
return self.binner, self.grouper, self.obj
def _set_grouper(self, obj: FrameOrSeries, sort: bool = False):
"""
given an object and the specifications, setup the internal grouper
for this particular specification
Parameters
----------
obj : Series or DataFrame
sort : bool, default False
whether the resulting grouper should be sorted
"""
assert obj is not None
if not obj.equals(self.obj):
self._reset_grouper()
if self.key is not None and self.level is not None:
raise ValueError("The Grouper cannot specify both a key and a level!")
# Keep self.grouper value before overriding
if self._grouper is None:
self._grouper = self.grouper
# the key must be a valid info item
if self.key is not None:
key = self.key
# The 'on' is already defined
if getattr(self.grouper, "name", None) == key and isinstance(
obj, ABCSeries
):
ax = self._grouper.take(obj.index)
else:
if key not in obj._info_axis:
raise KeyError(f"The grouper name {key} is not found")
ax = Index(obj[key], name=key)
else:
ax = obj._get_axis(self.axis)
if self.level is not None:
level = self.level
# if a level is given it must be a mi level or
# equivalent to the axis name
if isinstance(ax, MultiIndex):
level = ax._get_level_number(level)
ax = Index(ax._get_level_values(level), name=ax.names[level])
else:
if level not in (0, ax.name):
raise ValueError(f"The level {level} is not valid")
# possibly sort
if (self.sort or sort) and not ax.is_monotonic:
# use stable sort to support first, last, nth
indexer = self.indexer = ax.argsort(kind="mergesort")
ax = ax.take(indexer)
obj = obj.take(indexer, axis=self.axis, is_copy=False)
self.obj = obj
self.grouper = ax
return self.grouper
@property
def groups(self):
return self.grouper.groups
def __repr__(self) -> str:
attrs_list = (
f"{attr_name}={getattr(self, attr_name)!r}"
for attr_name in self._attributes
if getattr(self, attr_name) is not None
)
attrs = ", ".join(attrs_list)
cls_name = self.__class__.__name__
return f"{cls_name}({attrs})"
class Grouping:
"""
Holds the grouping information for a single key
Parameters
----------
index : Index
grouper :
obj Union[DataFrame, Series]:
name :
level :
observed : bool, default False
If we are a Categorical, use the observed values
in_axis : if the Grouping is a column in self.obj and hence among
Groupby.exclusions list
Returns
-------
**Attributes**:
* indices : dict of {group -> index_list}
* codes : ndarray, group codes
* group_index : unique groups
* groups : dict of {group -> label_list}
"""
def __init__(
self,
index: Index,
grouper=None,
obj: Optional[FrameOrSeries] = None,
name=None,
level=None,
sort: bool = True,
observed: bool = False,
in_axis: bool = False,
):
self.name = name
self.level = level
self.grouper = _convert_grouper(index, grouper)
self.all_grouper = None
self.index = index
self.sort = sort
self.obj = obj
self.observed = observed
self.in_axis = in_axis
# right place for this?
if isinstance(grouper, (Series, Index)) and name is None:
self.name = grouper.name
if isinstance(grouper, MultiIndex):
self.grouper = grouper.values
# we have a single grouper which may be a myriad of things,
# some of which are dependent on the passing in level
if level is not None:
if not isinstance(level, int):
if level not in index.names:
raise AssertionError(f"Level {level} not in index")
level = index.names.index(level)
if self.name is None:
self.name = index.names[level]
(
self.grouper,
self._codes,
self._group_index,
) = index._get_grouper_for_level(self.grouper, level)
# a passed Grouper like, directly get the grouper in the same way
# as single grouper groupby, use the group_info to get codes
elif isinstance(self.grouper, Grouper):
# get the new grouper; we already have disambiguated
# what key/level refer to exactly, don't need to
# check again as we have by this point converted these
# to an actual value (rather than a pd.Grouper)
_, grouper, _ = self.grouper._get_grouper(self.obj, validate=False)
if self.name is None:
self.name = grouper.result_index.name
self.obj = self.grouper.obj
self.grouper = grouper._get_grouper()
else:
if self.grouper is None and self.name is not None and self.obj is not None:
self.grouper = self.obj[self.name]
elif isinstance(self.grouper, (list, tuple)):
self.grouper = com.asarray_tuplesafe(self.grouper)
# a passed Categorical
elif is_categorical_dtype(self.grouper):
self.grouper, self.all_grouper = recode_for_groupby(
self.grouper, self.sort, observed
)
categories = self.grouper.categories
# we make a CategoricalIndex out of the cat grouper
# preserving the categories / ordered attributes
self._codes = self.grouper.codes
if observed:
codes = algorithms.unique1d(self.grouper.codes)
codes = codes[codes != -1]
if sort or self.grouper.ordered:
codes = np.sort(codes)
else:
codes = np.arange(len(categories))
self._group_index = CategoricalIndex(
Categorical.from_codes(
codes=codes, categories=categories, ordered=self.grouper.ordered
),
name=self.name,
)
# we are done
if isinstance(self.grouper, Grouping):
self.grouper = self.grouper.grouper
# no level passed
elif not isinstance(
self.grouper, (Series, Index, ExtensionArray, np.ndarray)
):
if getattr(self.grouper, "ndim", 1) != 1:
t = self.name or str(type(self.grouper))
raise ValueError(f"Grouper for '{t}' not 1-dimensional")
self.grouper = self.index.map(self.grouper)
if not (
hasattr(self.grouper, "__len__")
and len(self.grouper) == len(self.index)
):
grper = pprint_thing(self.grouper)
errmsg = (
"Grouper result violates len(labels) == "
f"len(data)\nresult: {grper}"
)
self.grouper = None # Try for sanity
raise AssertionError(errmsg)
# if we have a date/time-like grouper, make sure that we have
# Timestamps like
if getattr(self.grouper, "dtype", None) is not None:
if is_datetime64_dtype(self.grouper):
self.grouper = self.grouper.astype("datetime64[ns]")
elif is_timedelta64_dtype(self.grouper):
self.grouper = self.grouper.astype("timedelta64[ns]")
def __repr__(self) -> str:
return f"Grouping({self.name})"
def __iter__(self):
return iter(self.indices)
_codes: Optional[np.ndarray] = None
_group_index: Optional[Index] = None
@property
def ngroups(self) -> int:
return len(self.group_index)
@cache_readonly
def indices(self):
# we have a list of groupers
if isinstance(self.grouper, ops.BaseGrouper):
return self.grouper.indices
values = ensure_categorical(self.grouper)
return values._reverse_indexer()
@property
def codes(self) -> np.ndarray:
if self._codes is None:
self._make_codes()
return self._codes
@cache_readonly
def result_index(self) -> Index:
if self.all_grouper is not None:
return recode_from_groupby(self.all_grouper, self.sort, self.group_index)
return self.group_index
@property
def group_index(self) -> Index:
if self._group_index is None:
self._make_codes()
assert self._group_index is not None
return self._group_index
def _make_codes(self) -> None:
if self._codes is None or self._group_index is None:
# we have a list of groupers
if isinstance(self.grouper, ops.BaseGrouper):
codes = self.grouper.codes_info
uniques = self.grouper.result_index
else:
codes, uniques = algorithms.factorize(self.grouper, sort=self.sort)
uniques = Index(uniques, name=self.name)
self._codes = codes
self._group_index = uniques
@cache_readonly
def groups(self) -> dict:
return self.index.groupby(Categorical.from_codes(self.codes, self.group_index))
def get_grouper(
obj: FrameOrSeries,
key=None,
axis: int = 0,
level=None,
sort: bool = True,
observed: bool = False,
mutated: bool = False,
validate: bool = True,
) -> "Tuple[ops.BaseGrouper, List[Hashable], FrameOrSeries]":
"""
Create and return a BaseGrouper, which is an internal
mapping of how to create the grouper indexers.
This may be composed of multiple Grouping objects, indicating
multiple groupers
Groupers are ultimately index mappings. They can originate as:
index mappings, keys to columns, functions, or Groupers
Groupers enable local references to axis,level,sort, while
the passed in axis, level, and sort are 'global'.
This routine tries to figure out what the passing in references
are and then creates a Grouping for each one, combined into
a BaseGrouper.
If observed & we have a categorical grouper, only show the observed
values.
If validate, then check for key/level overlaps.
"""
group_axis = obj._get_axis(axis)
# validate that the passed single level is compatible with the passed
# axis of the object
if level is not None:
# TODO: These if-block and else-block are almost same.
# MultiIndex instance check is removable, but it seems that there are
# some processes only for non-MultiIndex in else-block,
# eg. `obj.index.name != level`. We have to consider carefully whether
# these are applicable for MultiIndex. Even if these are applicable,
# we need to check if it makes no side effect to subsequent processes
# on the outside of this condition.
# (GH 17621)
if isinstance(group_axis, MultiIndex):
if is_list_like(level) and len(level) == 1:
level = level[0]
if key is None and is_scalar(level):
# Get the level values from group_axis
key = group_axis.get_level_values(level)
level = None
else:
# allow level to be a length-one list-like object
# (e.g., level=[0])
# GH 13901
if is_list_like(level):
nlevels = len(level)
if nlevels == 1:
level = level[0]
elif nlevels == 0:
raise ValueError("No group keys passed!")
else:
raise ValueError("multiple levels only valid with MultiIndex")
if isinstance(level, str):
if obj.index.name != level:
raise ValueError(f"level name {level} is not the name of the index")
elif level > 0 or level < -1:
raise ValueError("level > 0 or level < -1 only valid with MultiIndex")
# NOTE: `group_axis` and `group_axis.get_level_values(level)`
# are same in this section.
level = None
key = group_axis
# a passed-in Grouper, directly convert
if isinstance(key, Grouper):
binner, grouper, obj = key._get_grouper(obj, validate=False)
if key.key is None:
return grouper, [], obj
else:
return grouper, [key.key], obj
# already have a BaseGrouper, just return it
elif isinstance(key, ops.BaseGrouper):
return key, [], obj
# In the future, a tuple key will always mean an actual key,
# not an iterable of keys. In the meantime, we attempt to provide
# a warning. We can assume that the user wanted a list of keys when
# the key is not in the index. We just have to be careful with
# unhashable elements of `key`. Any unhashable elements implies that
# they wanted a list of keys.
# https://github.com/pandas-dev/pandas/issues/18314
if isinstance(key, tuple):
all_hashable = is_hashable(key)
if (
all_hashable and key not in obj and set(key).issubset(obj)
) or not all_hashable:
# column names ('a', 'b') -> ['a', 'b']
# arrays like (a, b) -> [a, b]
msg = (
"Interpreting tuple 'by' as a list of keys, rather than "
"a single key. Use 'by=[...]' instead of 'by=(...)'. In "
"the future, a tuple will always mean a single key."
)
warnings.warn(msg, FutureWarning, stacklevel=5)
key = list(key)
if not isinstance(key, list):
keys = [key]
match_axis_length = False
else:
keys = key
match_axis_length = len(keys) == len(group_axis)
# what are we after, exactly?
any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
any_groupers = any(isinstance(g, Grouper) for g in keys)
any_arraylike = any(
isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys
)
# is this an index replacement?
if (
not any_callable
and not any_arraylike
and not any_groupers
and match_axis_length
and level is None
):
if isinstance(obj, DataFrame):
all_in_columns_index = all(
g in obj.columns or g in obj.index.names for g in keys
)
else:
assert isinstance(obj, Series)
all_in_columns_index = all(g in obj.index.names for g in keys)
if not all_in_columns_index:
keys = [com.asarray_tuplesafe(keys)]
if isinstance(level, (tuple, list)):
if key is None:
keys = [None] * len(level)
levels = level
else:
levels = [level] * len(keys)
groupings: List[Grouping] = []
exclusions: List[Hashable] = []
# if the actual grouper should be obj[key]
def is_in_axis(key) -> bool:
if not _is_label_like(key):
items = obj._data.items
try:
items.get_loc(key)
except (KeyError, TypeError):
# TypeError shows up here if we pass e.g. Int64Index
return False
return True
# if the grouper is obj[name]
def is_in_obj(gpr) -> bool:
if not hasattr(gpr, "name"):
return False
try:
return gpr is obj[gpr.name]
except (KeyError, IndexError):
return False
for i, (gpr, level) in enumerate(zip(keys, levels)):
if is_in_obj(gpr): # df.groupby(df['name'])
in_axis, name = True, gpr.name
exclusions.append(name)
elif is_in_axis(gpr): # df.groupby('name')
if gpr in obj:
if validate:
obj._check_label_or_level_ambiguity(gpr, axis=axis)
in_axis, name, gpr = True, gpr, obj[gpr]
exclusions.append(name)
elif obj._is_level_reference(gpr, axis=axis):
in_axis, name, level, gpr = False, None, gpr, None
else:
raise KeyError(gpr)
elif isinstance(gpr, Grouper) and gpr.key is not None:
# Add key to exclusions
exclusions.append(gpr.key)
in_axis, name = False, None
else:
in_axis, name = False, None
if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]:
raise ValueError(
f"Length of grouper ({len(gpr)}) and axis ({obj.shape[axis]})"
" must be same length"
)
# create the Grouping
# allow us to passing the actual Grouping as the gpr
ping = (
Grouping(
group_axis,
gpr,
obj=obj,
name=name,
level=level,
sort=sort,
observed=observed,
in_axis=in_axis,
)
if not isinstance(gpr, Grouping)
else gpr
)
groupings.append(ping)
if len(groupings) == 0 and len(obj):
raise ValueError("No group keys passed!")
elif len(groupings) == 0:
groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp)))
# create the internals grouper
grouper = ops.BaseGrouper(group_axis, groupings, sort=sort, mutated=mutated)
return grouper, exclusions, obj
def _is_label_like(val) -> bool:
return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val))
def _convert_grouper(axis: Index, grouper):
if isinstance(grouper, dict):
return grouper.get
elif isinstance(grouper, Series):
if grouper.index.equals(axis):
return grouper._values
else:
return grouper.reindex(axis)._values
elif isinstance(grouper, (list, Series, Index, np.ndarray)):
if len(grouper) != len(axis):
raise ValueError("Grouper and axis must be same length")
return grouper
else:
return grouper