|
| 1 | +""" |
| 2 | +The Mandelbrot set is the set of complex numbers "c" for which the series |
| 3 | +"z_(n+1) = z_n * z_n + c" does not diverge, i.e. remains bounded. Thus, a |
| 4 | +complex number "c" is a member of the Mandelbrot set if, when starting with |
| 5 | +"z_0 = 0" and applying the iteration repeatedly, the absolute value of |
| 6 | +"z_n" remains bounded for all "n > 0". Complex numbers can be written as |
| 7 | +"a + b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" |
| 8 | +is the imaginary component, usually drawn on the y-axis. Most visualizations |
| 9 | +of the Mandelbrot set use a color-coding to indicate after how many steps in |
| 10 | +the series the numbers outside the set diverge. Images of the Mandelbrot set |
| 11 | +exhibit an elaborate and infinitely complicated boundary that reveals |
| 12 | +progressively ever-finer recursive detail at increasing magnifications, making |
| 13 | +the boundary of the Mandelbrot set a fractal curve. |
| 14 | +(description adapted from https://en.wikipedia.org/wiki/Mandelbrot_set ) |
| 15 | +(see also https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set ) |
| 16 | +""" |
| 17 | + |
| 18 | + |
| 19 | +import colorsys |
| 20 | + |
| 21 | +from PIL import Image # type: ignore |
| 22 | + |
| 23 | + |
| 24 | +def get_distance(x: float, y: float, max_step: int) -> float: |
| 25 | + """ |
| 26 | + Return the relative distance (= step/max_step) after which the complex number |
| 27 | + constituted by this x-y-pair diverges. Members of the Mandelbrot set do not |
| 28 | + diverge so their distance is 1. |
| 29 | +
|
| 30 | + >>> get_distance(0, 0, 50) |
| 31 | + 1.0 |
| 32 | + >>> get_distance(0.5, 0.5, 50) |
| 33 | + 0.061224489795918366 |
| 34 | + >>> get_distance(2, 0, 50) |
| 35 | + 0.0 |
| 36 | + """ |
| 37 | + a = x |
| 38 | + b = y |
| 39 | + for step in range(max_step): |
| 40 | + a_new = a * a - b * b + x |
| 41 | + b = 2 * a * b + y |
| 42 | + a = a_new |
| 43 | + |
| 44 | + # divergence happens for all complex number with an absolute value |
| 45 | + # greater than 4 |
| 46 | + if a * a + b * b > 4: |
| 47 | + break |
| 48 | + return step / (max_step - 1) |
| 49 | + |
| 50 | + |
| 51 | +def get_black_and_white_rgb(distance: float) -> tuple: |
| 52 | + """ |
| 53 | + Black&white color-coding that ignores the relative distance. The Mandelbrot |
| 54 | + set is black, everything else is white. |
| 55 | +
|
| 56 | + >>> get_black_and_white_rgb(0) |
| 57 | + (255, 255, 255) |
| 58 | + >>> get_black_and_white_rgb(0.5) |
| 59 | + (255, 255, 255) |
| 60 | + >>> get_black_and_white_rgb(1) |
| 61 | + (0, 0, 0) |
| 62 | + """ |
| 63 | + if distance == 1: |
| 64 | + return (0, 0, 0) |
| 65 | + else: |
| 66 | + return (255, 255, 255) |
| 67 | + |
| 68 | + |
| 69 | +def get_color_coded_rgb(distance: float) -> tuple: |
| 70 | + """ |
| 71 | + Color-coding taking the relative distance into account. The Mandelbrot set |
| 72 | + is black. |
| 73 | +
|
| 74 | + >>> get_color_coded_rgb(0) |
| 75 | + (255, 0, 0) |
| 76 | + >>> get_color_coded_rgb(0.5) |
| 77 | + (0, 255, 255) |
| 78 | + >>> get_color_coded_rgb(1) |
| 79 | + (0, 0, 0) |
| 80 | + """ |
| 81 | + if distance == 1: |
| 82 | + return (0, 0, 0) |
| 83 | + else: |
| 84 | + return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(distance, 1, 1)) |
| 85 | + |
| 86 | + |
| 87 | +def get_image( |
| 88 | + image_width: int = 800, |
| 89 | + image_height: int = 600, |
| 90 | + figure_center_x: float = -0.6, |
| 91 | + figure_center_y: float = 0, |
| 92 | + figure_width: float = 3.2, |
| 93 | + max_step: int = 50, |
| 94 | + use_distance_color_coding: bool = True, |
| 95 | +) -> Image.Image: |
| 96 | + """ |
| 97 | + Function to generate the image of the Mandelbrot set. Two types of coordinates |
| 98 | + are used: image-coordinates that refer to the pixels and figure-coordinates |
| 99 | + that refer to the complex numbers inside and outside the Mandelbrot set. The |
| 100 | + figure-coordinates in the arguments of this function determine which section |
| 101 | + of the Mandelbrot set is viewed. The main area of the Mandelbrot set is |
| 102 | + roughly between "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates. |
| 103 | +
|
| 104 | + >>> get_image().load()[0,0] |
| 105 | + (255, 0, 0) |
| 106 | + >>> get_image(use_distance_color_coding = False).load()[0,0] |
| 107 | + (255, 255, 255) |
| 108 | + """ |
| 109 | + img = Image.new("RGB", (image_width, image_height)) |
| 110 | + pixels = img.load() |
| 111 | + |
| 112 | + # loop through the image-coordinates |
| 113 | + for image_x in range(image_width): |
| 114 | + for image_y in range(image_height): |
| 115 | + |
| 116 | + # determine the figure-coordinates based on the image-coordinates |
| 117 | + figure_height = figure_width / image_width * image_height |
| 118 | + figure_x = figure_center_x + (image_x / image_width - 0.5) * figure_width |
| 119 | + figure_y = figure_center_y + (image_y / image_height - 0.5) * figure_height |
| 120 | + |
| 121 | + distance = get_distance(figure_x, figure_y, max_step) |
| 122 | + |
| 123 | + # color the corresponding pixel based on the selected coloring-function |
| 124 | + if use_distance_color_coding: |
| 125 | + pixels[image_x, image_y] = get_color_coded_rgb(distance) |
| 126 | + else: |
| 127 | + pixels[image_x, image_y] = get_black_and_white_rgb(distance) |
| 128 | + |
| 129 | + return img |
| 130 | + |
| 131 | + |
| 132 | +if __name__ == "__main__": |
| 133 | + import doctest |
| 134 | + |
| 135 | + doctest.testmod() |
| 136 | + |
| 137 | + # colored version, full figure |
| 138 | + img = get_image() |
| 139 | + |
| 140 | + # uncomment for colored version, different section, zoomed in |
| 141 | + # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, |
| 142 | + # figure_width = 0.8) |
| 143 | + |
| 144 | + # uncomment for black and white version, full figure |
| 145 | + # img = get_image(use_distance_color_coding = False) |
| 146 | + |
| 147 | + # uncomment to save the image |
| 148 | + # img.save("mandelbrot.png") |
| 149 | + |
| 150 | + img.show() |
0 commit comments