forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathn_body_simulation.py
250 lines (212 loc) · 8.57 KB
/
n_body_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""
In physics and astronomy, a gravitational N-body simulation is a simulation of a
dynamical system of particles under the influence of gravity. The system
consists of a number of bodies, each of which exerts a gravitational force on all
other bodies. These forces are calculated using Newton's law of universal
gravitation. The Euler method is used at each time-step to calculate the change in
velocity and position brought about by these forces. Softening is used to prevent
numerical divergences when a particle comes too close to another (and the force
goes to infinity).
(Description adapted from https://en.wikipedia.org/wiki/N-body_simulation )
(See also http://www.shodor.org/refdesk/Resources/Algorithms/EulersMethod/ )
"""
from __future__ import annotations
import random
from matplotlib import animation # type: ignore
from matplotlib import pyplot as plt
class Body:
def __init__(
self: Body,
position_x: float,
position_y: float,
velocity_x: float,
velocity_y: float,
mass: float = 1.0,
size: float = 1.0,
color: str = "blue",
) -> None:
"""
The parameters "size" & "color" are not relevant for the simulation itself,
they are only used for plotting.
"""
self.position_x = position_x
self.position_y = position_y
self.velocity_x = velocity_x
self.velocity_y = velocity_y
self.mass = mass
self.size = size
self.color = color
def update_velocity(
self: Body, force_x: float, force_y: float, delta_time: float
) -> None:
"""
Euler algorithm for velocity
>>> body = Body(0.,0.,0.,0.)
>>> body.update_velocity(1.,0.,1.)
>>> body.velocity_x
1.0
"""
self.velocity_x += force_x * delta_time
self.velocity_y += force_y * delta_time
def update_position(self: Body, delta_time: float) -> None:
"""
Euler algorithm for position
>>> body = Body(0.,0.,1.,0.)
>>> body.update_position(1.)
>>> body.position_x
1.0
"""
self.position_x += self.velocity_x * delta_time
self.position_y += self.velocity_y * delta_time
class BodySystem:
"""
This class is used to hold the bodies, the gravitation constant, the time
factor and the softening factor. The time factor is used to control the speed
of the simulation. The softening factor is used for softening, a numerical
trick for N-body simulations to prevent numerical divergences when two bodies
get too close to each other.
"""
def __init__(
self: BodySystem,
bodies: list[Body],
gravitation_constant: float = 1.0,
time_factor: float = 1.0,
softening_factor: float = 0.0,
) -> None:
self.bodies = bodies
self.gravitation_constant = gravitation_constant
self.time_factor = time_factor
self.softening_factor = softening_factor
def update_system(self: BodySystem, delta_time: float) -> None:
"""
For each body, loop through all other bodies to calculate the total
force they exert on it. Use that force to update the body's velocity.
>>> body_system = BodySystem([Body(0,0,0,0), Body(10,0,0,0)])
>>> body_system.update_system(1)
>>> body_system.bodies[0].position_x
0.01
"""
for body1 in self.bodies:
force_x = 0.0
force_y = 0.0
for body2 in self.bodies:
if body1 != body2:
dif_x = body2.position_x - body1.position_x
dif_y = body2.position_y - body1.position_y
# Calculation of the distance using Pythagoras's theorem
# Extra factor due to the softening technique
distance = (dif_x ** 2 + dif_y ** 2 + self.softening_factor) ** (
1 / 2
)
# Newton's law of universal gravitation.
force_x += (
self.gravitation_constant * body2.mass * dif_x / distance ** 3
)
force_y += (
self.gravitation_constant * body2.mass * dif_y / distance ** 3
)
# Update the body's velocity once all the force components have been added
body1.update_velocity(force_x, force_y, delta_time * self.time_factor)
# Update the positions only after all the velocities have been updated
for body in self.bodies:
body.update_position(delta_time * self.time_factor)
def plot(
title: str,
body_system: BodySystem,
x_start: float = -1,
x_end: float = 1,
y_start: float = -1,
y_end: float = 1,
) -> None:
INTERVAL = 20 # Frame rate of the animation
DELTA_TIME = INTERVAL / 1000 # Time between time steps in seconds
fig = plt.figure()
fig.canvas.set_window_title(title)
# Set section to be plotted
ax = plt.axes(xlim=(x_start, x_end), ylim=(y_start, y_end))
# Each body is drawn as a patch by the plt-function
patches = []
for body in body_system.bodies:
patches.append(
plt.Circle((body.position_x, body.position_y), body.size, fc=body.color)
)
# Function called once at the start of the animation
def init() -> list[patches.Circle]: # type: ignore
axes = plt.gca()
axes.set_aspect("equal")
for patch in patches:
ax.add_patch(patch)
return patches
# Function called at each step of the animation
def animate(i: int) -> list[patches.Circle]: # type: ignore
# Update the positions of the bodies
body_system.update_system(DELTA_TIME)
# Update the positions of the patches
for patch, body in zip(patches, body_system.bodies):
patch.center = (body.position_x, body.position_y)
return patches
anim = animation.FuncAnimation( # noqa: F841
fig, animate, init_func=init, interval=INTERVAL, blit=True
)
plt.show()
if __name__ == "__main__":
# Example 1: figure-8 solution to the 3-body-problem
position_x = 0.9700436
position_y = -0.24308753
velocity_x = 0.466203685
velocity_y = 0.43236573
bodies1 = [
Body(position_x, position_y, velocity_x, velocity_y, size=0.2, color="red"),
Body(-position_x, -position_y, velocity_x, velocity_y, size=0.2, color="green"),
Body(0, 0, -2 * velocity_x, -2 * velocity_y, size=0.2, color="blue"),
]
body_system1 = BodySystem(bodies1, time_factor=3)
plot("Figure-8 solution to the 3-body-problem", body_system1, -2, 2, -2, 2)
# Example 2: Moon's orbit around the earth
moon_mass = 7.3476e22
earth_mass = 5.972e24
velocity_dif = 1022
earth_moon_distance = 384399000
gravitation_constant = 6.674e-11
# Calculation of the respective velocities so that total impulse is zero,
# i.e. the two bodies together don't move
moon_velocity = earth_mass * velocity_dif / (earth_mass + moon_mass)
earth_velocity = moon_velocity - velocity_dif
moon = Body(-earth_moon_distance, 0, 0, moon_velocity, moon_mass, 10000000, "grey")
earth = Body(0, 0, 0, earth_velocity, earth_mass, 50000000, "blue")
body_system2 = BodySystem([earth, moon], gravitation_constant, time_factor=1000000)
plot(
"Moon's orbit around the earth",
body_system2,
-430000000,
430000000,
-430000000,
430000000,
)
# Example 3: Random system with many bodies
bodies = []
for i in range(10):
velocity_x = random.uniform(-0.5, 0.5)
velocity_y = random.uniform(-0.5, 0.5)
# Bodies are created pairwise with opposite velocities so that the
# total impulse remains zero
bodies.append(
Body(
random.uniform(-0.5, 0.5),
random.uniform(-0.5, 0.5),
velocity_x,
velocity_y,
size=0.05,
)
)
bodies.append(
Body(
random.uniform(-0.5, 0.5),
random.uniform(-0.5, 0.5),
-velocity_x,
-velocity_y,
size=0.05,
)
)
body_system3 = BodySystem(bodies, 0.01, 10, 0.1)
plot("Random system with many bodies", body_system3, -1.5, 1.5, -1.5, 1.5)