Skip to content

Commit 5fddbb3

Browse files
committed
STYLE: Inconsistent namespace - groupby (pandas-dev#39992)
1 parent 8837b36 commit 5fddbb3

9 files changed

+41
-43
lines changed

pandas/tests/groupby/aggregate/test_aggregate.py

+11-11
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,7 @@ def test_groupby_aggregation_multi_level_column():
127127
]
128128
df = DataFrame(
129129
data=lst,
130-
columns=pd.MultiIndex.from_tuples([("A", 0), ("A", 1), ("B", 0), ("B", 1)]),
130+
columns=MultiIndex.from_tuples([("A", 0), ("A", 1), ("B", 0), ("B", 1)]),
131131
)
132132

133133
result = df.groupby(level=1, axis=1).sum()
@@ -310,7 +310,7 @@ def test_agg_multiple_functions_same_name_with_ohlc_present():
310310
{"A": ["ohlc", partial(np.quantile, q=0.9999), partial(np.quantile, q=0.1111)]}
311311
)
312312
expected_index = pd.date_range("1/1/2012", freq="3T", periods=6)
313-
expected_columns = pd.MultiIndex.from_tuples(
313+
expected_columns = MultiIndex.from_tuples(
314314
[
315315
("A", "ohlc", "open"),
316316
("A", "ohlc", "high"),
@@ -484,7 +484,7 @@ def test_func_duplicates_raises():
484484
pd.CategoricalIndex(list("abc")),
485485
pd.interval_range(0, 3),
486486
pd.period_range("2020", periods=3, freq="D"),
487-
pd.MultiIndex.from_tuples([("a", 0), ("a", 1), ("b", 0)]),
487+
MultiIndex.from_tuples([("a", 0), ("a", 1), ("b", 0)]),
488488
],
489489
)
490490
def test_agg_index_has_complex_internals(index):
@@ -665,7 +665,7 @@ def test_duplicate_no_raises(self):
665665
def test_agg_relabel_with_level(self):
666666
df = DataFrame(
667667
{"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]},
668-
index=pd.MultiIndex.from_product([["A", "B"], ["a", "b"]]),
668+
index=MultiIndex.from_product([["A", "B"], ["a", "b"]]),
669669
)
670670
result = df.groupby(level=0).agg(
671671
aa=("A", "max"), bb=("A", "min"), cc=("B", "mean")
@@ -745,7 +745,7 @@ def test_agg_relabel_multiindex_column(
745745
df = DataFrame(
746746
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
747747
)
748-
df.columns = pd.MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
748+
df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
749749
idx = Index(["a", "b"], name=("x", "group"))
750750

751751
result = df.groupby(("x", "group")).agg(a_max=(("y", "A"), "max"))
@@ -766,7 +766,7 @@ def test_agg_relabel_multiindex_raises_not_exist():
766766
df = DataFrame(
767767
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
768768
)
769-
df.columns = pd.MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
769+
df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
770770

771771
with pytest.raises(KeyError, match="do not exist"):
772772
df.groupby(("x", "group")).agg(a=(("Y", "a"), "max"))
@@ -779,7 +779,7 @@ def test_agg_relabel_multiindex_duplicates():
779779
df = DataFrame(
780780
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
781781
)
782-
df.columns = pd.MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
782+
df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
783783

784784
result = df.groupby(("x", "group")).agg(
785785
a=(("y", "A"), "min"), b=(("y", "A"), "min")
@@ -797,7 +797,7 @@ def test_groupby_aggregate_empty_key(kwargs):
797797
expected = DataFrame(
798798
[1, 4],
799799
index=Index([1, 2], dtype="int64", name="a"),
800-
columns=pd.MultiIndex.from_tuples([["c", "min"]]),
800+
columns=MultiIndex.from_tuples([["c", "min"]]),
801801
)
802802
tm.assert_frame_equal(result, expected)
803803

@@ -806,7 +806,7 @@ def test_groupby_aggregate_empty_key_empty_return():
806806
# GH: 32580 Check if everything works, when return is empty
807807
df = DataFrame({"a": [1, 1, 2], "b": [1, 2, 3], "c": [1, 2, 4]})
808808
result = df.groupby("a").agg({"b": []})
809-
expected = DataFrame(columns=pd.MultiIndex(levels=[["b"], []], codes=[[], []]))
809+
expected = DataFrame(columns=MultiIndex(levels=[["b"], []], codes=[[], []]))
810810
tm.assert_frame_equal(result, expected)
811811

812812

@@ -851,7 +851,7 @@ def test_grouby_agg_loses_results_with_as_index_false_relabel_multiindex():
851851
def test_multiindex_custom_func(func):
852852
# GH 31777
853853
data = [[1, 4, 2], [5, 7, 1]]
854-
df = DataFrame(data, columns=pd.MultiIndex.from_arrays([[1, 1, 2], [3, 4, 3]]))
854+
df = DataFrame(data, columns=MultiIndex.from_arrays([[1, 1, 2], [3, 4, 3]]))
855855
result = df.groupby(np.array([0, 1])).agg(func)
856856
expected_dict = {(1, 3): {0: 1, 1: 5}, (1, 4): {0: 4, 1: 7}, (2, 3): {0: 2, 1: 1}}
857857
expected = DataFrame(expected_dict)
@@ -1150,7 +1150,7 @@ def test_groupby_combined_aggs_cat_cols(grp_col_dict, exp_data):
11501150
multi_index_list.append([k, value])
11511151
else:
11521152
multi_index_list.append([k, v])
1153-
multi_index = pd.MultiIndex.from_tuples(tuple(multi_index_list))
1153+
multi_index = MultiIndex.from_tuples(tuple(multi_index_list))
11541154

11551155
expected_df = DataFrame(data=exp_data, columns=multi_index, index=cat_index)
11561156

pandas/tests/groupby/aggregate/test_other.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -439,7 +439,7 @@ def test_agg_over_numpy_arrays():
439439
def test_agg_tzaware_non_datetime_result(as_period):
440440
# discussed in GH#29589, fixed in GH#29641, operating on tzaware values
441441
# with function that is not dtype-preserving
442-
dti = pd.date_range("2012-01-01", periods=4, tz="UTC")
442+
dti = date_range("2012-01-01", periods=4, tz="UTC")
443443
if as_period:
444444
dti = dti.tz_localize(None).to_period("D")
445445

pandas/tests/groupby/test_apply.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -930,7 +930,7 @@ def test_groupby_apply_datetime_result_dtypes():
930930
pd.CategoricalIndex(list("abc")),
931931
pd.interval_range(0, 3),
932932
pd.period_range("2020", periods=3, freq="D"),
933-
pd.MultiIndex.from_tuples([("a", 0), ("a", 1), ("b", 0)]),
933+
MultiIndex.from_tuples([("a", 0), ("a", 1), ("b", 0)]),
934934
],
935935
)
936936
def test_apply_index_has_complex_internals(index):
@@ -1070,7 +1070,7 @@ def test_apply_with_date_in_multiindex_does_not_convert_to_timestamp():
10701070

10711071
expected = df.iloc[[0, 2, 3]]
10721072
expected = expected.reset_index()
1073-
expected.index = pd.MultiIndex.from_frame(expected[["A", "B", "idx"]])
1073+
expected.index = MultiIndex.from_frame(expected[["A", "B", "idx"]])
10741074
expected = expected.drop(columns="idx")
10751075

10761076
tm.assert_frame_equal(result, expected)
@@ -1086,7 +1086,7 @@ def test_apply_by_cols_equals_apply_by_rows_transposed():
10861086

10871087
df = DataFrame(
10881088
np.random.random([6, 4]),
1089-
columns=pd.MultiIndex.from_product([["A", "B"], [1, 2]]),
1089+
columns=MultiIndex.from_product([["A", "B"], [1, 2]]),
10901090
)
10911091

10921092
by_rows = df.T.groupby(axis=0, level=0).apply(

pandas/tests/groupby/test_categorical.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -1568,7 +1568,7 @@ def test_aggregate_categorical_with_isnan():
15681568
df = df.astype({"categorical_col": "category"})
15691569

15701570
result = df.groupby(["A", "B"]).agg(lambda df: df.isna().sum())
1571-
index = pd.MultiIndex.from_arrays([[1, 1], [1, 2]], names=("A", "B"))
1571+
index = MultiIndex.from_arrays([[1, 1], [1, 2]], names=("A", "B"))
15721572
expected = DataFrame(
15731573
data={
15741574
"numerical_col": [1.0, 0.0],
@@ -1640,7 +1640,7 @@ def test_series_groupby_first_on_categorical_col_grouped_on_2_categoricals(
16401640
df = DataFrame({"a": cat, "b": cat, "c": val})
16411641

16421642
cat2 = Categorical([0, 1])
1643-
idx = pd.MultiIndex.from_product([cat2, cat2], names=["a", "b"])
1643+
idx = MultiIndex.from_product([cat2, cat2], names=["a", "b"])
16441644
expected_dict = {
16451645
"first": Series([0, np.NaN, np.NaN, 1], idx, name="c"),
16461646
"last": Series([1, np.NaN, np.NaN, 0], idx, name="c"),
@@ -1665,7 +1665,7 @@ def test_df_groupby_first_on_categorical_col_grouped_on_2_categoricals(
16651665
df = DataFrame({"a": cat, "b": cat, "c": val})
16661666

16671667
cat2 = Categorical([0, 1])
1668-
idx = pd.MultiIndex.from_product([cat2, cat2], names=["a", "b"])
1668+
idx = MultiIndex.from_product([cat2, cat2], names=["a", "b"])
16691669
expected_dict = {
16701670
"first": Series([0, np.NaN, np.NaN, 1], idx, name="c"),
16711671
"last": Series([1, np.NaN, np.NaN, 0], idx, name="c"),

pandas/tests/groupby/test_function.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -370,7 +370,7 @@ def test_mad(self, gb, gni):
370370
def test_describe(self, df, gb, gni):
371371
# describe
372372
expected_index = Index([1, 3], name="A")
373-
expected_col = pd.MultiIndex(
373+
expected_col = MultiIndex(
374374
levels=[["B"], ["count", "mean", "std", "min", "25%", "50%", "75%", "max"]],
375375
codes=[[0] * 8, list(range(8))],
376376
)
@@ -566,7 +566,7 @@ def test_idxmin_idxmax_axis1():
566566

567567
tm.assert_series_equal(alt[indexer], res.droplevel("A"))
568568

569-
df["E"] = pd.date_range("2016-01-01", periods=10)
569+
df["E"] = date_range("2016-01-01", periods=10)
570570
gb2 = df.groupby("A")
571571

572572
msg = "reduction operation 'argmax' not allowed for this dtype"
@@ -958,7 +958,7 @@ def test_frame_describe_multikey(tsframe):
958958
for col in tsframe:
959959
group = grouped[col].describe()
960960
# GH 17464 - Remove duplicate MultiIndex levels
961-
group_col = pd.MultiIndex(
961+
group_col = MultiIndex(
962962
levels=[[col], group.columns],
963963
codes=[[0] * len(group.columns), range(len(group.columns))],
964964
)

pandas/tests/groupby/test_groupby.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -1234,7 +1234,7 @@ def test_groupby_list_infer_array_like(df):
12341234
def test_groupby_keys_same_size_as_index():
12351235
# GH 11185
12361236
freq = "s"
1237-
index = pd.date_range(
1237+
index = date_range(
12381238
start=Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq
12391239
)
12401240
df = DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index)
@@ -1704,7 +1704,7 @@ def test_pivot_table_values_key_error():
17041704
# This test is designed to replicate the error in issue #14938
17051705
df = DataFrame(
17061706
{
1707-
"eventDate": pd.date_range(datetime.today(), periods=20, freq="M").tolist(),
1707+
"eventDate": date_range(datetime.today(), periods=20, freq="M").tolist(),
17081708
"thename": range(0, 20),
17091709
}
17101710
)
@@ -1793,7 +1793,7 @@ def test_groupby_agg_ohlc_non_first():
17931793
df = DataFrame(
17941794
[[1], [1]],
17951795
columns=["foo"],
1796-
index=pd.date_range("2018-01-01", periods=2, freq="D"),
1796+
index=date_range("2018-01-01", periods=2, freq="D"),
17971797
)
17981798

17991799
expected = DataFrame(
@@ -1807,7 +1807,7 @@ def test_groupby_agg_ohlc_non_first():
18071807
("foo", "ohlc", "close"),
18081808
)
18091809
),
1810-
index=pd.date_range("2018-01-01", periods=2, freq="D"),
1810+
index=date_range("2018-01-01", periods=2, freq="D"),
18111811
)
18121812

18131813
result = df.groupby(Grouper(freq="D")).agg(["sum", "ohlc"])

pandas/tests/groupby/test_grouping.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -611,7 +611,7 @@ def test_grouping_labels(self, mframe):
611611

612612
def test_list_grouper_with_nat(self):
613613
# GH 14715
614-
df = DataFrame({"date": pd.date_range("1/1/2011", periods=365, freq="D")})
614+
df = DataFrame({"date": date_range("1/1/2011", periods=365, freq="D")})
615615
df.iloc[-1] = pd.NaT
616616
grouper = pd.Grouper(key="date", freq="AS")
617617

pandas/tests/groupby/test_timegrouper.py

+5-7
Original file line numberDiff line numberDiff line change
@@ -228,7 +228,7 @@ def test_timegrouper_with_reg_groups(self):
228228

229229
# multi names
230230
df = df.copy()
231-
df["Date"] = df.index + pd.offsets.MonthEnd(2)
231+
df["Date"] = df.index + offsets.MonthEnd(2)
232232
result = df.groupby([Grouper(freq="1M", key="Date"), "Buyer"]).sum()
233233
expected = DataFrame(
234234
{
@@ -434,7 +434,7 @@ def sumfunc_value(x):
434434
def test_groupby_groups_datetimeindex(self):
435435
# GH#1430
436436
periods = 1000
437-
ind = pd.date_range(start="2012/1/1", freq="5min", periods=periods)
437+
ind = date_range(start="2012/1/1", freq="5min", periods=periods)
438438
df = DataFrame(
439439
{"high": np.arange(periods), "low": np.arange(periods)}, index=ind
440440
)
@@ -445,7 +445,7 @@ def test_groupby_groups_datetimeindex(self):
445445
assert isinstance(list(groups.keys())[0], datetime)
446446

447447
# GH#11442
448-
index = pd.date_range("2015/01/01", periods=5, name="date")
448+
index = date_range("2015/01/01", periods=5, name="date")
449449
df = DataFrame({"A": [5, 6, 7, 8, 9], "B": [1, 2, 3, 4, 5]}, index=index)
450450
result = df.groupby(level="date").groups
451451
dates = ["2015-01-05", "2015-01-04", "2015-01-03", "2015-01-02", "2015-01-01"]
@@ -672,9 +672,7 @@ def test_groupby_with_timezone_selection(self):
672672
df = DataFrame(
673673
{
674674
"factor": np.random.randint(0, 3, size=60),
675-
"time": pd.date_range(
676-
"01/01/2000 00:00", periods=60, freq="s", tz="UTC"
677-
),
675+
"time": date_range("01/01/2000 00:00", periods=60, freq="s", tz="UTC"),
678676
}
679677
)
680678
df1 = df.groupby("factor").max()["time"]
@@ -693,7 +691,7 @@ def test_timezone_info(self):
693691

694692
def test_datetime_count(self):
695693
df = DataFrame(
696-
{"a": [1, 2, 3] * 2, "dates": pd.date_range("now", periods=6, freq="T")}
694+
{"a": [1, 2, 3] * 2, "dates": date_range("now", periods=6, freq="T")}
697695
)
698696
result = df.groupby("a").dates.count()
699697
expected = Series([2, 2, 2], index=Index([1, 2, 3], name="a"), name="dates")

pandas/tests/groupby/transform/test_transform.py

+10-10
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@ def test_transform_fast():
101101
{
102102
"grouping": [0, 1, 1, 3],
103103
"f": [1.1, 2.1, 3.1, 4.5],
104-
"d": pd.date_range("2014-1-1", "2014-1-4"),
104+
"d": date_range("2014-1-1", "2014-1-4"),
105105
"i": [1, 2, 3, 4],
106106
},
107107
columns=["grouping", "f", "i", "d"],
@@ -347,7 +347,7 @@ def test_transform_transformation_func(request, transformation_func):
347347
"A": ["foo", "foo", "foo", "foo", "bar", "bar", "baz"],
348348
"B": [1, 2, np.nan, 3, 3, np.nan, 4],
349349
},
350-
index=pd.date_range("2020-01-01", "2020-01-07"),
350+
index=date_range("2020-01-01", "2020-01-07"),
351351
)
352352

353353
if transformation_func == "cumcount":
@@ -413,7 +413,7 @@ def test_transform_function_aliases(df):
413413
def test_series_fast_transform_date():
414414
# GH 13191
415415
df = DataFrame(
416-
{"grouping": [np.nan, 1, 1, 3], "d": pd.date_range("2014-1-1", "2014-1-4")}
416+
{"grouping": [np.nan, 1, 1, 3], "d": date_range("2014-1-1", "2014-1-4")}
417417
)
418418
result = df.groupby("grouping")["d"].transform("first")
419419
dates = [
@@ -649,7 +649,7 @@ def test_cython_transform_frame(op, args, targop):
649649
"float": s,
650650
"float_missing": s_missing,
651651
"int": [1, 1, 1, 1, 2] * 200,
652-
"datetime": pd.date_range("1990-1-1", periods=1000),
652+
"datetime": date_range("1990-1-1", periods=1000),
653653
"timedelta": pd.timedelta_range(1, freq="s", periods=1000),
654654
"string": strings * 50,
655655
"string_missing": strings_missing * 50,
@@ -667,7 +667,7 @@ def test_cython_transform_frame(op, args, targop):
667667
df["cat"] = df["string"].astype("category")
668668

669669
df2 = df.copy()
670-
df2.index = pd.MultiIndex.from_product([range(100), range(10)])
670+
df2.index = MultiIndex.from_product([range(100), range(10)])
671671

672672
# DataFrame - Single and MultiIndex,
673673
# group by values, index level, columns
@@ -691,7 +691,7 @@ def test_cython_transform_frame(op, args, targop):
691691
# to apply separately and concat
692692
i = gb[["int"]].apply(targop)
693693
f = gb[["float", "float_missing"]].apply(targop)
694-
expected = pd.concat([f, i], axis=1)
694+
expected = concat([f, i], axis=1)
695695
else:
696696
expected = gb.apply(targop)
697697

@@ -715,7 +715,7 @@ def test_cython_transform_frame(op, args, targop):
715715

716716
def test_transform_with_non_scalar_group():
717717
# GH 10165
718-
cols = pd.MultiIndex.from_tuples(
718+
cols = MultiIndex.from_tuples(
719719
[
720720
("syn", "A"),
721721
("mis", "A"),
@@ -761,7 +761,7 @@ def test_transform_numeric_ret(cols, exp, comp_func, agg_func, request):
761761

762762
# GH 19200
763763
df = DataFrame(
764-
{"a": pd.date_range("2018-01-01", periods=3), "b": range(3), "c": range(7, 10)}
764+
{"a": date_range("2018-01-01", periods=3), "b": range(3), "c": range(7, 10)}
765765
)
766766

767767
result = df.groupby("b")[cols].transform(agg_func)
@@ -958,7 +958,7 @@ def test_groupby_transform_rename():
958958
def demean_rename(x):
959959
result = x - x.mean()
960960

961-
if isinstance(x, pd.Series):
961+
if isinstance(x, Series):
962962
return result
963963

964964
result = result.rename(columns={c: "{c}_demeaned" for c in result.columns})
@@ -993,7 +993,7 @@ def test_groupby_transform_timezone_column(func):
993993
)
994994
def test_groupby_transform_with_datetimes(func, values):
995995
# GH 15306
996-
dates = pd.date_range("1/1/2011", periods=10, freq="D")
996+
dates = date_range("1/1/2011", periods=10, freq="D")
997997

998998
stocks = DataFrame({"price": np.arange(10.0)}, index=dates)
999999
stocks["week_id"] = dates.isocalendar().week

0 commit comments

Comments
 (0)