Skip to content

Commit 1b473f2

Browse files
authored
Merge pull request #1 from alexn11/alexn11-julia-sets
Added Julia sets drawing
2 parents 6f21f76 + 1cdf899 commit 1b473f2

File tree

1 file changed

+108
-0
lines changed

1 file changed

+108
-0
lines changed

fractals/julia_sets

+108
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,108 @@
1+
"""Author Alexandre De Zotti
2+
3+
Draws Julia sets of quadratic polynomials and exponential maps. More
4+
specifically, this iterates the function a fixed number of times then plot
5+
the absolute value of the last iterate and whether the absolute value of the
6+
last iterate is greater than a fixed threshold (named "escape radius"). For
7+
the exponential map this is not really an escape radius but rather a
8+
convenient way to approximate the Julia set with bounded orbits.
9+
"""
10+
11+
12+
import numpy
13+
from matplotlib import pyplot
14+
15+
c_polynomial = 0.25 + 0.0j
16+
c_exponential = -2.0
17+
nb_iterations = 56
18+
window_size = 2.0
19+
nb_pixels = 666
20+
21+
22+
def eval_exponential(c, z):
23+
"""
24+
>>> eval_exponential(0, 0)
25+
1.0
26+
"""
27+
return numpy.exp(z) + c
28+
29+
30+
def eval_quadratic_polynomial(c, z):
31+
"""
32+
>>> eval_quadratic_polynomial(0, 2)
33+
4
34+
>>> eval_quadratic_polynomial(-1, 1)
35+
0
36+
>>> eval_quadratic_polynomial(1.j, 0)
37+
1j
38+
"""
39+
return z * z + c
40+
41+
42+
def prepare_grid(window_size, nb_pixels) -> numpy.array:
43+
"""
44+
Create a grid of complex values of size nb_pixels*nb_pixels with real and
45+
imaginary parts ranging from -window_size to window_size (inclusive).
46+
Returns a numpy array.
47+
48+
>>> prepare_grid(1,3)
49+
array([[-1.-1.j, -1.+0.j, -1.+1.j],
50+
[ 0.-1.j, 0.+0.j, 0.+1.j],
51+
[ 1.-1.j, 1.+0.j, 1.+1.j]])
52+
"""
53+
x = numpy.linspace(-window_size, window_size, nb_pixels)
54+
x = x.reshape((nb_pixels, 1))
55+
y = numpy.linspace(-window_size, window_size, nb_pixels)
56+
y = y.reshape((1, nb_pixels))
57+
return x + 1.0j * y
58+
59+
60+
def iterate_function(eval_function, function_params, nb_iterations, z_0):
61+
"""
62+
Iterate the function "eval_function" exactly nb_iterations times.
63+
The first argument of the function is a parameter which is contained in
64+
function_params. The variable z_0 is an array that contains the initial
65+
values to iterate from.
66+
This function returns the final iterates.
67+
68+
>>> iterate_function(eval_quadratic_polynomial, 0, 3, numpy.array([0,1,2]))
69+
array([ 0, 1, 256])
70+
"""
71+
72+
z_n = z_0
73+
for i in range(nb_iterations):
74+
z_n = eval_function(function_params, z_n)
75+
return z_n
76+
77+
78+
def show_results(function_label, function_params, escape_radius, z_final):
79+
"""
80+
Plots the absolute value of z_final as well as whether it is greater than
81+
the value of escape_radius. Adds the function_label and function_params to
82+
the title.
83+
"""
84+
85+
abs_z_final = (abs(z_final)).transpose()
86+
pyplot.matshow(abs_z_final)
87+
pyplot.title(
88+
f"Absolute value of last iterate\n{function_label}, c={function_params}"
89+
)
90+
pyplot.colorbar()
91+
pyplot.show()
92+
pyplot.matshow(abs_z_final < escape_radius)
93+
pyplot.title(f"Escaped or not\n{function_label}, c={function_params}")
94+
pyplot.show()
95+
96+
97+
if __name__ == "__main__":
98+
99+
z_0 = prepare_grid(window_size, nb_pixels)
100+
z_final = iterate_function(
101+
eval_quadratic_polynomial, c_polynomial, nb_iterations, z_0
102+
)
103+
escape_radius = 2 * abs(c_polynomial) + 1
104+
show_results("z²+c", c_polynomial, escape_radius, z_final)
105+
106+
z_final = iterate_function(eval_exponential, c_exponential, nb_iterations, z_0 + 2)
107+
escape_radius = 10000.0
108+
show_results("exp(z)+c", c_exponential, escape_radius, z_final)

0 commit comments

Comments
 (0)