forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_panel.py
2615 lines (2074 loc) · 93.4 KB
/
test_panel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# pylint: disable=W0612,E1101
from warnings import catch_warnings, simplefilter
from datetime import datetime
import operator
import pytest
import numpy as np
from pandas.core.dtypes.common import is_float_dtype
from pandas import (Series, DataFrame, Index, date_range, isna, notna,
MultiIndex)
from pandas.core.nanops import nanall, nanany
from pandas.core.panel import Panel
from pandas.io.formats.printing import pprint_thing
from pandas import compat
from pandas.compat import range, lrange, StringIO, OrderedDict, signature
from pandas.tseries.offsets import BDay, MonthEnd
from pandas.util.testing import (assert_panel_equal, assert_frame_equal,
assert_series_equal, assert_almost_equal,
ensure_clean, makeMixedDataFrame,
makeCustomDataframe as mkdf)
import pandas.core.panel as panelm
import pandas.util.testing as tm
import pandas.util._test_decorators as td
def make_test_panel():
with catch_warnings(record=True):
simplefilter("ignore", FutureWarning)
_panel = tm.makePanel()
tm.add_nans(_panel)
_panel = _panel.copy()
return _panel
@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
class PanelTests(object):
panel = None
def test_pickle(self):
unpickled = tm.round_trip_pickle(self.panel)
assert_frame_equal(unpickled['ItemA'], self.panel['ItemA'])
def test_rank(self):
pytest.raises(NotImplementedError, lambda: self.panel.rank())
def test_cumsum(self):
cumsum = self.panel.cumsum()
assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum())
def not_hashable(self):
c_empty = Panel()
c = Panel(Panel([[[1]]]))
pytest.raises(TypeError, hash, c_empty)
pytest.raises(TypeError, hash, c)
@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
class SafeForLongAndSparse(object):
def test_repr(self):
repr(self.panel)
def test_copy_names(self):
for attr in ('major_axis', 'minor_axis'):
getattr(self.panel, attr).name = None
cp = self.panel.copy()
getattr(cp, attr).name = 'foo'
assert getattr(self.panel, attr).name is None
def test_iter(self):
tm.equalContents(list(self.panel), self.panel.items)
def test_count(self):
f = lambda s: notna(s).sum()
self._check_stat_op('count', f, obj=self.panel, has_skipna=False)
def test_sum(self):
self._check_stat_op('sum', np.sum, skipna_alternative=np.nansum)
def test_mean(self):
self._check_stat_op('mean', np.mean)
@td.skip_if_no("numpy", min_version="1.10.0")
def test_prod(self):
self._check_stat_op('prod', np.prod, skipna_alternative=np.nanprod)
@pytest.mark.filterwarnings("ignore:Invalid value:RuntimeWarning")
@pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning")
def test_median(self):
def wrapper(x):
if isna(x).any():
return np.nan
return np.median(x)
self._check_stat_op('median', wrapper)
@pytest.mark.filterwarnings("ignore:Invalid value:RuntimeWarning")
def test_min(self):
self._check_stat_op('min', np.min)
@pytest.mark.filterwarnings("ignore:Invalid value:RuntimeWarning")
def test_max(self):
self._check_stat_op('max', np.max)
@td.skip_if_no_scipy
def test_skew(self):
from scipy.stats import skew
def this_skew(x):
if len(x) < 3:
return np.nan
return skew(x, bias=False)
self._check_stat_op('skew', this_skew)
def test_var(self):
def alt(x):
if len(x) < 2:
return np.nan
return np.var(x, ddof=1)
self._check_stat_op('var', alt)
def test_std(self):
def alt(x):
if len(x) < 2:
return np.nan
return np.std(x, ddof=1)
self._check_stat_op('std', alt)
def test_sem(self):
def alt(x):
if len(x) < 2:
return np.nan
return np.std(x, ddof=1) / np.sqrt(len(x))
self._check_stat_op('sem', alt)
def _check_stat_op(self, name, alternative, obj=None, has_skipna=True,
skipna_alternative=None):
if obj is None:
obj = self.panel
# # set some NAs
# obj.loc[5:10] = np.nan
# obj.loc[15:20, -2:] = np.nan
f = getattr(obj, name)
if has_skipna:
skipna_wrapper = tm._make_skipna_wrapper(alternative,
skipna_alternative)
def wrapper(x):
return alternative(np.asarray(x))
for i in range(obj.ndim):
result = f(axis=i, skipna=False)
assert_frame_equal(result, obj.apply(wrapper, axis=i))
else:
skipna_wrapper = alternative
wrapper = alternative
for i in range(obj.ndim):
result = f(axis=i)
if name in ['sum', 'prod']:
assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i))
pytest.raises(Exception, f, axis=obj.ndim)
# Unimplemented numeric_only parameter.
if 'numeric_only' in signature(f).args:
tm.assert_raises_regex(NotImplementedError, name, f,
numeric_only=True)
@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
class SafeForSparse(object):
def test_get_axis(self):
assert (self.panel._get_axis(0) is self.panel.items)
assert (self.panel._get_axis(1) is self.panel.major_axis)
assert (self.panel._get_axis(2) is self.panel.minor_axis)
def test_set_axis(self):
new_items = Index(np.arange(len(self.panel.items)))
new_major = Index(np.arange(len(self.panel.major_axis)))
new_minor = Index(np.arange(len(self.panel.minor_axis)))
# ensure propagate to potentially prior-cached items too
item = self.panel['ItemA']
self.panel.items = new_items
if hasattr(self.panel, '_item_cache'):
assert 'ItemA' not in self.panel._item_cache
assert self.panel.items is new_items
# TODO: unused?
item = self.panel[0] # noqa
self.panel.major_axis = new_major
assert self.panel[0].index is new_major
assert self.panel.major_axis is new_major
# TODO: unused?
item = self.panel[0] # noqa
self.panel.minor_axis = new_minor
assert self.panel[0].columns is new_minor
assert self.panel.minor_axis is new_minor
def test_get_axis_number(self):
assert self.panel._get_axis_number('items') == 0
assert self.panel._get_axis_number('major') == 1
assert self.panel._get_axis_number('minor') == 2
with tm.assert_raises_regex(ValueError, "No axis named foo"):
self.panel._get_axis_number('foo')
with tm.assert_raises_regex(ValueError, "No axis named foo"):
self.panel.__ge__(self.panel, axis='foo')
def test_get_axis_name(self):
assert self.panel._get_axis_name(0) == 'items'
assert self.panel._get_axis_name(1) == 'major_axis'
assert self.panel._get_axis_name(2) == 'minor_axis'
def test_get_plane_axes(self):
# what to do here?
index, columns = self.panel._get_plane_axes('items')
index, columns = self.panel._get_plane_axes('major_axis')
index, columns = self.panel._get_plane_axes('minor_axis')
index, columns = self.panel._get_plane_axes(0)
def test_truncate(self):
dates = self.panel.major_axis
start, end = dates[1], dates[5]
trunced = self.panel.truncate(start, end, axis='major')
expected = self.panel['ItemA'].truncate(start, end)
assert_frame_equal(trunced['ItemA'], expected)
trunced = self.panel.truncate(before=start, axis='major')
expected = self.panel['ItemA'].truncate(before=start)
assert_frame_equal(trunced['ItemA'], expected)
trunced = self.panel.truncate(after=end, axis='major')
expected = self.panel['ItemA'].truncate(after=end)
assert_frame_equal(trunced['ItemA'], expected)
def test_arith(self):
self._test_op(self.panel, operator.add)
self._test_op(self.panel, operator.sub)
self._test_op(self.panel, operator.mul)
self._test_op(self.panel, operator.truediv)
self._test_op(self.panel, operator.floordiv)
self._test_op(self.panel, operator.pow)
self._test_op(self.panel, lambda x, y: y + x)
self._test_op(self.panel, lambda x, y: y - x)
self._test_op(self.panel, lambda x, y: y * x)
self._test_op(self.panel, lambda x, y: y / x)
self._test_op(self.panel, lambda x, y: y ** x)
self._test_op(self.panel, lambda x, y: x + y) # panel + 1
self._test_op(self.panel, lambda x, y: x - y) # panel - 1
self._test_op(self.panel, lambda x, y: x * y) # panel * 1
self._test_op(self.panel, lambda x, y: x / y) # panel / 1
self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1
pytest.raises(Exception, self.panel.__add__,
self.panel['ItemA'])
@staticmethod
def _test_op(panel, op):
result = op(panel, 1)
assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1))
def test_keys(self):
tm.equalContents(list(self.panel.keys()), self.panel.items)
def test_iteritems(self):
# Test panel.iteritems(), aka panel.iteritems()
# just test that it works
for k, v in self.panel.iteritems():
pass
assert len(list(self.panel.iteritems())) == len(self.panel.items)
def test_combineFrame(self):
def check_op(op, name):
# items
df = self.panel['ItemA']
func = getattr(self.panel, name)
result = func(df, axis='items')
assert_frame_equal(
result['ItemB'], op(self.panel['ItemB'], df))
# major
xs = self.panel.major_xs(self.panel.major_axis[0])
result = func(xs, axis='major')
idx = self.panel.major_axis[1]
assert_frame_equal(result.major_xs(idx),
op(self.panel.major_xs(idx), xs))
# minor
xs = self.panel.minor_xs(self.panel.minor_axis[0])
result = func(xs, axis='minor')
idx = self.panel.minor_axis[1]
assert_frame_equal(result.minor_xs(idx),
op(self.panel.minor_xs(idx), xs))
ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'pow', 'mod']
if not compat.PY3:
ops.append('div')
for op in ops:
try:
check_op(getattr(operator, op), op)
except AttributeError:
pprint_thing("Failing operation: %r" % op)
raise
if compat.PY3:
try:
check_op(operator.truediv, 'div')
except AttributeError:
pprint_thing("Failing operation: %r" % 'div')
raise
def test_combinePanel(self):
result = self.panel.add(self.panel)
assert_panel_equal(result, self.panel * 2)
def test_neg(self):
assert_panel_equal(-self.panel, self.panel * -1)
# issue 7692
def test_raise_when_not_implemented(self):
p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5),
items=['ItemA', 'ItemB', 'ItemC'],
major_axis=date_range('20130101', periods=4),
minor_axis=list('ABCDE'))
d = p.sum(axis=1).iloc[0]
ops = ['add', 'sub', 'mul', 'truediv',
'floordiv', 'div', 'mod', 'pow']
for op in ops:
with pytest.raises(NotImplementedError):
getattr(p, op)(d, axis=0)
def test_select(self):
p = self.panel
# select items
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items')
expected = p.reindex(items=['ItemA', 'ItemC'])
assert_panel_equal(result, expected)
# select major_axis
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = p.select(lambda x: x >= datetime(
2000, 1, 15), axis='major')
new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)]
expected = p.reindex(major=new_major)
assert_panel_equal(result, expected)
# select minor_axis
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = p.select(lambda x: x in ('D', 'A'), axis=2)
expected = p.reindex(minor=['A', 'D'])
assert_panel_equal(result, expected)
# corner case, empty thing
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = p.select(lambda x: x in ('foo', ), axis='items')
assert_panel_equal(result, p.reindex(items=[]))
def test_get_value(self):
for item in self.panel.items:
for mjr in self.panel.major_axis[::2]:
for mnr in self.panel.minor_axis:
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = self.panel.get_value(item, mjr, mnr)
expected = self.panel[item][mnr][mjr]
assert_almost_equal(result, expected)
def test_abs(self):
result = self.panel.abs()
result2 = abs(self.panel)
expected = np.abs(self.panel)
assert_panel_equal(result, expected)
assert_panel_equal(result2, expected)
df = self.panel['ItemA']
result = df.abs()
result2 = abs(df)
expected = np.abs(df)
assert_frame_equal(result, expected)
assert_frame_equal(result2, expected)
s = df['A']
result = s.abs()
result2 = abs(s)
expected = np.abs(s)
assert_series_equal(result, expected)
assert_series_equal(result2, expected)
assert result.name == 'A'
assert result2.name == 'A'
@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
class CheckIndexing(object):
def test_getitem(self):
pytest.raises(Exception, self.panel.__getitem__, 'ItemQ')
def test_delitem_and_pop(self):
expected = self.panel['ItemA']
result = self.panel.pop('ItemA')
assert_frame_equal(expected, result)
assert 'ItemA' not in self.panel.items
del self.panel['ItemB']
assert 'ItemB' not in self.panel.items
pytest.raises(Exception, self.panel.__delitem__, 'ItemB')
values = np.empty((3, 3, 3))
values[0] = 0
values[1] = 1
values[2] = 2
panel = Panel(values, lrange(3), lrange(3), lrange(3))
# did we delete the right row?
panelc = panel.copy()
del panelc[0]
tm.assert_frame_equal(panelc[1], panel[1])
tm.assert_frame_equal(panelc[2], panel[2])
panelc = panel.copy()
del panelc[1]
tm.assert_frame_equal(panelc[0], panel[0])
tm.assert_frame_equal(panelc[2], panel[2])
panelc = panel.copy()
del panelc[2]
tm.assert_frame_equal(panelc[1], panel[1])
tm.assert_frame_equal(panelc[0], panel[0])
def test_setitem(self):
lp = self.panel.filter(['ItemA', 'ItemB']).to_frame()
with pytest.raises(ValueError):
self.panel['ItemE'] = lp
# DataFrame
df = self.panel['ItemA'][2:].filter(items=['A', 'B'])
self.panel['ItemF'] = df
self.panel['ItemE'] = df
df2 = self.panel['ItemF']
assert_frame_equal(df, df2.reindex(
index=df.index, columns=df.columns))
# scalar
self.panel['ItemG'] = 1
self.panel['ItemE'] = True
assert self.panel['ItemG'].values.dtype == np.int64
assert self.panel['ItemE'].values.dtype == np.bool_
# object dtype
self.panel['ItemQ'] = 'foo'
assert self.panel['ItemQ'].values.dtype == np.object_
# boolean dtype
self.panel['ItemP'] = self.panel['ItemA'] > 0
assert self.panel['ItemP'].values.dtype == np.bool_
pytest.raises(TypeError, self.panel.__setitem__, 'foo',
self.panel.loc[['ItemP']])
# bad shape
p = Panel(np.random.randn(4, 3, 2))
with tm.assert_raises_regex(ValueError,
r"shape of value must be "
r"\(3, 2\), shape of given "
r"object was \(4, 2\)"):
p[0] = np.random.randn(4, 2)
def test_setitem_ndarray(self):
timeidx = date_range(start=datetime(2009, 1, 1),
end=datetime(2009, 12, 31),
freq=MonthEnd())
lons_coarse = np.linspace(-177.5, 177.5, 72)
lats_coarse = np.linspace(-87.5, 87.5, 36)
P = Panel(items=timeidx, major_axis=lons_coarse,
minor_axis=lats_coarse)
data = np.random.randn(72 * 36).reshape((72, 36))
key = datetime(2009, 2, 28)
P[key] = data
assert_almost_equal(P[key].values, data)
def test_set_minor_major(self):
# GH 11014
df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan])
df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0])
panel = Panel({'Item1': df1, 'Item2': df2})
newminor = notna(panel.iloc[:, :, 0])
panel.loc[:, :, 'NewMinor'] = newminor
assert_frame_equal(panel.loc[:, :, 'NewMinor'],
newminor.astype(object))
newmajor = notna(panel.iloc[:, 0, :])
panel.loc[:, 'NewMajor', :] = newmajor
assert_frame_equal(panel.loc[:, 'NewMajor', :],
newmajor.astype(object))
def test_major_xs(self):
ref = self.panel['ItemA']
idx = self.panel.major_axis[5]
xs = self.panel.major_xs(idx)
result = xs['ItemA']
assert_series_equal(result, ref.xs(idx), check_names=False)
assert result.name == 'ItemA'
# not contained
idx = self.panel.major_axis[0] - BDay()
pytest.raises(Exception, self.panel.major_xs, idx)
def test_major_xs_mixed(self):
self.panel['ItemD'] = 'foo'
xs = self.panel.major_xs(self.panel.major_axis[0])
assert xs['ItemA'].dtype == np.float64
assert xs['ItemD'].dtype == np.object_
def test_minor_xs(self):
ref = self.panel['ItemA']
idx = self.panel.minor_axis[1]
xs = self.panel.minor_xs(idx)
assert_series_equal(xs['ItemA'], ref[idx], check_names=False)
# not contained
pytest.raises(Exception, self.panel.minor_xs, 'E')
def test_minor_xs_mixed(self):
self.panel['ItemD'] = 'foo'
xs = self.panel.minor_xs('D')
assert xs['ItemA'].dtype == np.float64
assert xs['ItemD'].dtype == np.object_
def test_xs(self):
itemA = self.panel.xs('ItemA', axis=0)
expected = self.panel['ItemA']
tm.assert_frame_equal(itemA, expected)
# Get a view by default.
itemA_view = self.panel.xs('ItemA', axis=0)
itemA_view.values[:] = np.nan
assert np.isnan(self.panel['ItemA'].values).all()
# Mixed-type yields a copy.
self.panel['strings'] = 'foo'
result = self.panel.xs('D', axis=2)
assert result._is_copy is not None
def test_getitem_fancy_labels(self):
p = self.panel
items = p.items[[1, 0]]
dates = p.major_axis[::2]
cols = ['D', 'C', 'F']
# all 3 specified
with catch_warnings():
simplefilter("ignore", FutureWarning)
# XXX: warning in _validate_read_indexer
assert_panel_equal(p.loc[items, dates, cols],
p.reindex(items=items, major=dates, minor=cols))
# 2 specified
assert_panel_equal(p.loc[:, dates, cols],
p.reindex(major=dates, minor=cols))
assert_panel_equal(p.loc[items, :, cols],
p.reindex(items=items, minor=cols))
assert_panel_equal(p.loc[items, dates, :],
p.reindex(items=items, major=dates))
# only 1
assert_panel_equal(p.loc[items, :, :], p.reindex(items=items))
assert_panel_equal(p.loc[:, dates, :], p.reindex(major=dates))
assert_panel_equal(p.loc[:, :, cols], p.reindex(minor=cols))
def test_getitem_fancy_slice(self):
pass
def test_getitem_fancy_ints(self):
p = self.panel
# #1603
result = p.iloc[:, -1, :]
expected = p.loc[:, p.major_axis[-1], :]
assert_frame_equal(result, expected)
def test_getitem_fancy_xs(self):
p = self.panel
item = 'ItemB'
date = p.major_axis[5]
col = 'C'
# get DataFrame
# item
assert_frame_equal(p.loc[item], p[item])
assert_frame_equal(p.loc[item, :], p[item])
assert_frame_equal(p.loc[item, :, :], p[item])
# major axis, axis=1
assert_frame_equal(p.loc[:, date], p.major_xs(date))
assert_frame_equal(p.loc[:, date, :], p.major_xs(date))
# minor axis, axis=2
assert_frame_equal(p.loc[:, :, 'C'], p.minor_xs('C'))
# get Series
assert_series_equal(p.loc[item, date], p[item].loc[date])
assert_series_equal(p.loc[item, date, :], p[item].loc[date])
assert_series_equal(p.loc[item, :, col], p[item][col])
assert_series_equal(p.loc[:, date, col], p.major_xs(date).loc[col])
def test_getitem_fancy_xs_check_view(self):
item = 'ItemB'
date = self.panel.major_axis[5]
# make sure it's always a view
NS = slice(None, None)
# DataFrames
comp = assert_frame_equal
self._check_view(item, comp)
self._check_view((item, NS), comp)
self._check_view((item, NS, NS), comp)
self._check_view((NS, date), comp)
self._check_view((NS, date, NS), comp)
self._check_view((NS, NS, 'C'), comp)
# Series
comp = assert_series_equal
self._check_view((item, date), comp)
self._check_view((item, date, NS), comp)
self._check_view((item, NS, 'C'), comp)
self._check_view((NS, date, 'C'), comp)
def test_getitem_callable(self):
p = self.panel
# GH 12533
assert_frame_equal(p[lambda x: 'ItemB'], p.loc['ItemB'])
assert_panel_equal(p[lambda x: ['ItemB', 'ItemC']],
p.loc[['ItemB', 'ItemC']])
def test_ix_setitem_slice_dataframe(self):
a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33],
minor_axis=[111, 222, 333])
b = DataFrame(np.random.randn(2, 3), index=[111, 333],
columns=[1, 2, 3])
a.loc[:, 22, [111, 333]] = b
assert_frame_equal(a.loc[:, 22, [111, 333]], b)
def test_ix_align(self):
from pandas import Series
b = Series(np.random.randn(10), name=0)
b.sort_values()
df_orig = Panel(np.random.randn(3, 10, 2))
df = df_orig.copy()
df.loc[0, :, 0] = b
assert_series_equal(df.loc[0, :, 0].reindex(b.index), b)
df = df_orig.swapaxes(0, 1)
df.loc[:, 0, 0] = b
assert_series_equal(df.loc[:, 0, 0].reindex(b.index), b)
df = df_orig.swapaxes(1, 2)
df.loc[0, 0, :] = b
assert_series_equal(df.loc[0, 0, :].reindex(b.index), b)
def test_ix_frame_align(self):
p_orig = tm.makePanel()
df = p_orig.iloc[0].copy()
assert_frame_equal(p_orig['ItemA'], df)
p = p_orig.copy()
p.iloc[0, :, :] = df
assert_panel_equal(p, p_orig)
p = p_orig.copy()
p.iloc[0] = df
assert_panel_equal(p, p_orig)
p = p_orig.copy()
p.iloc[0, :, :] = df
assert_panel_equal(p, p_orig)
p = p_orig.copy()
p.iloc[0] = df
assert_panel_equal(p, p_orig)
p = p_orig.copy()
p.loc['ItemA'] = df
assert_panel_equal(p, p_orig)
p = p_orig.copy()
p.loc['ItemA', :, :] = df
assert_panel_equal(p, p_orig)
p = p_orig.copy()
p['ItemA'] = df
assert_panel_equal(p, p_orig)
p = p_orig.copy()
p.iloc[0, [0, 1, 3, 5], -2:] = df
out = p.iloc[0, [0, 1, 3, 5], -2:]
assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]])
# GH3830, panel assignent by values/frame
for dtype in ['float64', 'int64']:
panel = Panel(np.arange(40).reshape((2, 4, 5)),
items=['a1', 'a2'], dtype=dtype)
df1 = panel.iloc[0]
df2 = panel.iloc[1]
tm.assert_frame_equal(panel.loc['a1'], df1)
tm.assert_frame_equal(panel.loc['a2'], df2)
# Assignment by Value Passes for 'a2'
panel.loc['a2'] = df1.values
tm.assert_frame_equal(panel.loc['a1'], df1)
tm.assert_frame_equal(panel.loc['a2'], df1)
# Assignment by DataFrame Ok w/o loc 'a2'
panel['a2'] = df2
tm.assert_frame_equal(panel.loc['a1'], df1)
tm.assert_frame_equal(panel.loc['a2'], df2)
# Assignment by DataFrame Fails for 'a2'
panel.loc['a2'] = df2
tm.assert_frame_equal(panel.loc['a1'], df1)
tm.assert_frame_equal(panel.loc['a2'], df2)
def _check_view(self, indexer, comp):
cp = self.panel.copy()
obj = cp.loc[indexer]
obj.values[:] = 0
assert (obj.values == 0).all()
comp(cp.loc[indexer].reindex_like(obj), obj)
def test_logical_with_nas(self):
d = Panel({'ItemA': {'a': [np.nan, False]},
'ItemB': {'a': [True, True]}})
result = d['ItemA'] | d['ItemB']
expected = DataFrame({'a': [np.nan, True]})
assert_frame_equal(result, expected)
# this is autodowncasted here
result = d['ItemA'].fillna(False) | d['ItemB']
expected = DataFrame({'a': [True, True]})
assert_frame_equal(result, expected)
def test_neg(self):
assert_panel_equal(-self.panel, -1 * self.panel)
def test_invert(self):
assert_panel_equal(-(self.panel < 0), ~(self.panel < 0))
def test_comparisons(self):
p1 = tm.makePanel()
p2 = tm.makePanel()
tp = p1.reindex(items=p1.items + ['foo'])
df = p1[p1.items[0]]
def test_comp(func):
# versus same index
result = func(p1, p2)
tm.assert_numpy_array_equal(result.values,
func(p1.values, p2.values))
# versus non-indexed same objs
pytest.raises(Exception, func, p1, tp)
# versus different objs
pytest.raises(Exception, func, p1, df)
# versus scalar
result3 = func(self.panel, 0)
tm.assert_numpy_array_equal(result3.values,
func(self.panel.values, 0))
with np.errstate(invalid='ignore'):
test_comp(operator.eq)
test_comp(operator.ne)
test_comp(operator.lt)
test_comp(operator.gt)
test_comp(operator.ge)
test_comp(operator.le)
def test_get_value(self):
for item in self.panel.items:
for mjr in self.panel.major_axis[::2]:
for mnr in self.panel.minor_axis:
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = self.panel.get_value(item, mjr, mnr)
expected = self.panel[item][mnr][mjr]
assert_almost_equal(result, expected)
with catch_warnings():
simplefilter("ignore", FutureWarning)
with tm.assert_raises_regex(TypeError,
"There must be an argument "
"for each axis"):
self.panel.get_value('a')
def test_set_value(self):
for item in self.panel.items:
for mjr in self.panel.major_axis[::2]:
for mnr in self.panel.minor_axis:
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
self.panel.set_value(item, mjr, mnr, 1.)
tm.assert_almost_equal(self.panel[item][mnr][mjr], 1.)
# resize
with catch_warnings():
simplefilter("ignore", FutureWarning)
res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5)
assert isinstance(res, Panel)
assert res is not self.panel
assert res.get_value('ItemE', 'foo', 'bar') == 1.5
res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5)
assert is_float_dtype(res3['ItemE'].values)
msg = ("There must be an argument for each "
"axis plus the value provided")
with tm.assert_raises_regex(TypeError, msg):
self.panel.set_value('a')
@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
class TestPanel(PanelTests, CheckIndexing, SafeForLongAndSparse,
SafeForSparse):
def setup_method(self, method):
self.panel = make_test_panel()
self.panel.major_axis.name = None
self.panel.minor_axis.name = None
self.panel.items.name = None
def test_constructor(self):
# with BlockManager
wp = Panel(self.panel._data)
assert wp._data is self.panel._data
wp = Panel(self.panel._data, copy=True)
assert wp._data is not self.panel._data
tm.assert_panel_equal(wp, self.panel)
# strings handled prop
wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]])
assert wp.values.dtype == np.object_
vals = self.panel.values
# no copy
wp = Panel(vals)
assert wp.values is vals
# copy
wp = Panel(vals, copy=True)
assert wp.values is not vals
# GH #8285, test when scalar data is used to construct a Panel
# if dtype is not passed, it should be inferred
value_and_dtype = [(1, 'int64'), (3.14, 'float64'),
('foo', np.object_)]
for (val, dtype) in value_and_dtype:
wp = Panel(val, items=range(2), major_axis=range(3),
minor_axis=range(4))
vals = np.empty((2, 3, 4), dtype=dtype)
vals.fill(val)
tm.assert_panel_equal(wp, Panel(vals, dtype=dtype))
# test the case when dtype is passed
wp = Panel(1, items=range(2), major_axis=range(3),
minor_axis=range(4),
dtype='float32')
vals = np.empty((2, 3, 4), dtype='float32')
vals.fill(1)
tm.assert_panel_equal(wp, Panel(vals, dtype='float32'))
def test_constructor_cast(self):
zero_filled = self.panel.fillna(0)
casted = Panel(zero_filled._data, dtype=int)
casted2 = Panel(zero_filled.values, dtype=int)
exp_values = zero_filled.values.astype(int)
assert_almost_equal(casted.values, exp_values)
assert_almost_equal(casted2.values, exp_values)
casted = Panel(zero_filled._data, dtype=np.int32)
casted2 = Panel(zero_filled.values, dtype=np.int32)
exp_values = zero_filled.values.astype(np.int32)
assert_almost_equal(casted.values, exp_values)
assert_almost_equal(casted2.values, exp_values)
# can't cast
data = [[['foo', 'bar', 'baz']]]
pytest.raises(ValueError, Panel, data, dtype=float)
def test_constructor_empty_panel(self):
empty = Panel()
assert len(empty.items) == 0
assert len(empty.major_axis) == 0
assert len(empty.minor_axis) == 0
def test_constructor_observe_dtype(self):
# GH #411
panel = Panel(items=lrange(3), major_axis=lrange(3),
minor_axis=lrange(3), dtype='O')
assert panel.values.dtype == np.object_
def test_constructor_dtypes(self):
# GH #797
def _check_dtype(panel, dtype):
for i in panel.items:
assert panel[i].values.dtype.name == dtype
# only nan holding types allowed here
for dtype in ['float64', 'float32', 'object']:
panel = Panel(items=lrange(2), major_axis=lrange(10),
minor_axis=lrange(5), dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype),
items=lrange(2),
major_axis=lrange(10),
minor_axis=lrange(5), dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'),
items=lrange(2),
major_axis=lrange(10),
minor_axis=lrange(5), dtype=dtype)
_check_dtype(panel, dtype)