@@ -39,6 +39,7 @@ The pandas I/O API is a set of top level ``reader`` functions accessed like
39
39
binary;`Msgpack <https://msgpack.org/index.html>`__;:ref: `read_msgpack<io.msgpack> `;:ref: `to_msgpack<io.msgpack> `
40
40
binary;`Stata <https://en.wikipedia.org/wiki/Stata>`__;:ref: `read_stata<io.stata_reader> `;:ref: `to_stata<io.stata_writer> `
41
41
binary;`SAS <https://en.wikipedia.org/wiki/SAS_(software)>`__;:ref: `read_sas<io.sas_reader> `;
42
+ binary;`SPSS <https://en.wikipedia.org/wiki/SPSS>`__;:ref: `read_spss<io.spss_reader> `;
42
43
binary;`Python Pickle Format <https://docs.python.org/3/library/pickle.html>`__;:ref: `read_pickle<io.pickle> `;:ref: `to_pickle<io.pickle> `
43
44
SQL;`SQL <https://en.wikipedia.org/wiki/SQL>`__;:ref: `read_sql<io.sql> `;:ref: `to_sql<io.sql> `
44
45
SQL;`Google Big Query <https://en.wikipedia.org/wiki/BigQuery>`__;:ref: `read_gbq<io.bigquery> `;:ref: `to_gbq<io.bigquery> `
@@ -5477,6 +5478,44 @@ web site.
5477
5478
5478
5479
No official documentation is available for the SAS7BDAT format.
5479
5480
5481
+ .. _io.spss :
5482
+
5483
+ .. _io.spss_reader :
5484
+
5485
+ SPSS formats
5486
+ ------------
5487
+
5488
+ .. versionadded :: 0.25.0
5489
+
5490
+ The top-level function :func: `read_spss ` can read (but not write) SPSS
5491
+ `sav ` (.sav) and `zsav ` (.zsav) format files.
5492
+
5493
+ SPSS files contain column names. By default the
5494
+ whole file is read, categorical columns are converted into ``pd.Categorical ``
5495
+ and a ``DataFrame `` with all columns is returned.
5496
+
5497
+ Specify a ``usecols `` to obtain a subset of columns. Specify ``convert_categoricals=False ``
5498
+ to avoid converting categorical columns into ``pd.Categorical ``.
5499
+
5500
+ Read a spss file:
5501
+
5502
+ .. code-block :: python
5503
+
5504
+ df = pd.read_spss(' spss_data.zsav' )
5505
+
5506
+ Extract a subset of columns ``usecols `` from SPSS file and
5507
+ avoid converting categorical columns into ``pd.Categorical ``:
5508
+
5509
+ .. code-block :: python
5510
+
5511
+ df = pd.read_spss(' spss_data.zsav' , usecols = [' foo' , ' bar' ],
5512
+ convert_categoricals = False )
5513
+
5514
+ More info _ about the sav and zsav file format is available from the IBM
5515
+ web site.
5516
+
5517
+ .. _info : https://www.ibm.com/support/knowledgecenter/en/SSLVMB_22.0.0/com.ibm.spss.statistics.help/spss/base/savedatatypes.htm
5518
+
5480
5519
.. _io.other :
5481
5520
5482
5521
Other file formats
0 commit comments