forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmissing.py
620 lines (502 loc) · 20.7 KB
/
missing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
"""
Routines for filling missing data
"""
import numpy as np
from distutils.version import LooseVersion
import pandas.algos as algos
import pandas.lib as lib
from pandas.compat import range, string_types
from pandas.types.common import (is_numeric_v_string_like,
is_float_dtype, is_datetime64_dtype,
is_integer_dtype, _ensure_float64,
is_scalar,
_DATELIKE_DTYPES,
needs_i8_conversion)
from pandas.types.missing import isnull
def mask_missing(arr, values_to_mask):
"""
Return a masking array of same size/shape as arr
with entries equaling any member of values_to_mask set to True
"""
if not isinstance(values_to_mask, (list, np.ndarray)):
values_to_mask = [values_to_mask]
try:
values_to_mask = np.array(values_to_mask, dtype=arr.dtype)
except Exception:
values_to_mask = np.array(values_to_mask, dtype=object)
na_mask = isnull(values_to_mask)
nonna = values_to_mask[~na_mask]
mask = None
for x in nonna:
if mask is None:
# numpy elementwise comparison warning
if is_numeric_v_string_like(arr, x):
mask = False
else:
mask = arr == x
# if x is a string and arr is not, then we get False and we must
# expand the mask to size arr.shape
if is_scalar(mask):
mask = np.zeros(arr.shape, dtype=bool)
else:
# numpy elementwise comparison warning
if is_numeric_v_string_like(arr, x):
mask |= False
else:
mask |= arr == x
if na_mask.any():
if mask is None:
mask = isnull(arr)
else:
mask |= isnull(arr)
return mask
def clean_fill_method(method, allow_nearest=False):
# asfreq is compat for resampling
if method in [None, 'asfreq']:
return None
if isinstance(method, string_types):
method = method.lower()
if method == 'ffill':
method = 'pad'
elif method == 'bfill':
method = 'backfill'
valid_methods = ['pad', 'backfill']
expecting = 'pad (ffill) or backfill (bfill)'
if allow_nearest:
valid_methods.append('nearest')
expecting = 'pad (ffill), backfill (bfill) or nearest'
if method not in valid_methods:
msg = ('Invalid fill method. Expecting %s. Got %s' %
(expecting, method))
raise ValueError(msg)
return method
def clean_interp_method(method, **kwargs):
order = kwargs.get('order')
valid = ['linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear',
'quadratic', 'cubic', 'barycentric', 'polynomial', 'krogh',
'piecewise_polynomial', 'pchip', 'akima', 'spline',
'from_derivatives']
if method in ('spline', 'polynomial') and order is None:
raise ValueError("You must specify the order of the spline or "
"polynomial.")
if method not in valid:
raise ValueError("method must be one of {0}."
"Got '{1}' instead.".format(valid, method))
return method
def interpolate_1d(xvalues, yvalues, method='linear', limit=None,
limit_direction='forward', fill_value=None,
bounds_error=False, order=None, **kwargs):
"""
Logic for the 1-d interpolation. The result should be 1-d, inputs
xvalues and yvalues will each be 1-d arrays of the same length.
Bounds_error is currently hardcoded to False since non-scipy ones don't
take it as an argumnet.
"""
# Treat the original, non-scipy methods first.
invalid = isnull(yvalues)
valid = ~invalid
if not valid.any():
# have to call np.asarray(xvalues) since xvalues could be an Index
# which cant be mutated
result = np.empty_like(np.asarray(xvalues), dtype=np.float64)
result.fill(np.nan)
return result
if valid.all():
return yvalues
if method == 'time':
if not getattr(xvalues, 'is_all_dates', None):
# if not issubclass(xvalues.dtype.type, np.datetime64):
raise ValueError('time-weighted interpolation only works '
'on Series or DataFrames with a '
'DatetimeIndex')
method = 'values'
def _interp_limit(invalid, fw_limit, bw_limit):
"Get idx of values that won't be filled b/c they exceed the limits."
for x in np.where(invalid)[0]:
if invalid[max(0, x - fw_limit):x + bw_limit + 1].all():
yield x
valid_limit_directions = ['forward', 'backward', 'both']
limit_direction = limit_direction.lower()
if limit_direction not in valid_limit_directions:
raise ValueError('Invalid limit_direction: expecting one of %r, got '
'%r.' % (valid_limit_directions, limit_direction))
from pandas import Series
ys = Series(yvalues)
start_nans = set(range(ys.first_valid_index()))
end_nans = set(range(1 + ys.last_valid_index(), len(valid)))
# This is a list of the indexes in the series whose yvalue is currently
# NaN, but whose interpolated yvalue will be overwritten with NaN after
# computing the interpolation. For each index in this list, one of these
# conditions is true of the corresponding NaN in the yvalues:
#
# a) It is one of a chain of NaNs at the beginning of the series, and
# either limit is not specified or limit_direction is 'forward'.
# b) It is one of a chain of NaNs at the end of the series, and limit is
# specified and limit_direction is 'backward' or 'both'.
# c) Limit is nonzero and it is further than limit from the nearest non-NaN
# value (with respect to the limit_direction setting).
#
# The default behavior is to fill forward with no limit, ignoring NaNs at
# the beginning (see issues #9218 and #10420)
violate_limit = sorted(start_nans)
if limit:
if limit_direction == 'forward':
violate_limit = sorted(start_nans | set(_interp_limit(invalid,
limit, 0)))
if limit_direction == 'backward':
violate_limit = sorted(end_nans | set(_interp_limit(invalid, 0,
limit)))
if limit_direction == 'both':
violate_limit = sorted(_interp_limit(invalid, limit, limit))
xvalues = getattr(xvalues, 'values', xvalues)
yvalues = getattr(yvalues, 'values', yvalues)
result = yvalues.copy()
if method in ['linear', 'time', 'index', 'values']:
if method in ('values', 'index'):
inds = np.asarray(xvalues)
# hack for DatetimeIndex, #1646
if needs_i8_conversion(inds.dtype.type):
inds = inds.view(np.int64)
if inds.dtype == np.object_:
inds = lib.maybe_convert_objects(inds)
else:
inds = xvalues
result[invalid] = np.interp(inds[invalid], inds[valid], yvalues[valid])
result[violate_limit] = np.nan
return result
sp_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic',
'barycentric', 'krogh', 'spline', 'polynomial',
'from_derivatives', 'piecewise_polynomial', 'pchip', 'akima']
if method in sp_methods:
inds = np.asarray(xvalues)
# hack for DatetimeIndex, #1646
if issubclass(inds.dtype.type, np.datetime64):
inds = inds.view(np.int64)
result[invalid] = _interpolate_scipy_wrapper(inds[valid],
yvalues[valid],
inds[invalid],
method=method,
fill_value=fill_value,
bounds_error=bounds_error,
order=order, **kwargs)
result[violate_limit] = np.nan
return result
def _interpolate_scipy_wrapper(x, y, new_x, method, fill_value=None,
bounds_error=False, order=None, **kwargs):
"""
passed off to scipy.interpolate.interp1d. method is scipy's kind.
Returns an array interpolated at new_x. Add any new methods to
the list in _clean_interp_method
"""
try:
from scipy import interpolate
# TODO: Why is DatetimeIndex being imported here?
from pandas import DatetimeIndex # noqa
except ImportError:
raise ImportError('{0} interpolation requires Scipy'.format(method))
new_x = np.asarray(new_x)
# ignores some kwargs that could be passed along.
alt_methods = {
'barycentric': interpolate.barycentric_interpolate,
'krogh': interpolate.krogh_interpolate,
'from_derivatives': _from_derivatives,
'piecewise_polynomial': _from_derivatives,
}
if getattr(x, 'is_all_dates', False):
# GH 5975, scipy.interp1d can't hande datetime64s
x, new_x = x._values.astype('i8'), new_x.astype('i8')
if method == 'pchip':
try:
alt_methods['pchip'] = interpolate.pchip_interpolate
except AttributeError:
raise ImportError("Your version of Scipy does not support "
"PCHIP interpolation.")
elif method == 'akima':
try:
from scipy.interpolate import Akima1DInterpolator # noqa
alt_methods['akima'] = _akima_interpolate
except ImportError:
raise ImportError("Your version of Scipy does not support "
"Akima interpolation.")
interp1d_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic',
'polynomial']
if method in interp1d_methods:
if method == 'polynomial':
method = order
terp = interpolate.interp1d(x, y, kind=method, fill_value=fill_value,
bounds_error=bounds_error)
new_y = terp(new_x)
elif method == 'spline':
# GH #10633
if not order:
raise ValueError("order needs to be specified and greater than 0")
terp = interpolate.UnivariateSpline(x, y, k=order, **kwargs)
new_y = terp(new_x)
else:
# GH 7295: need to be able to write for some reason
# in some circumstances: check all three
if not x.flags.writeable:
x = x.copy()
if not y.flags.writeable:
y = y.copy()
if not new_x.flags.writeable:
new_x = new_x.copy()
method = alt_methods[method]
new_y = method(x, y, new_x, **kwargs)
return new_y
def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False):
"""
Convenience function for interpolate.BPoly.from_derivatives
Construct a piecewise polynomial in the Bernstein basis, compatible
with the specified values and derivatives at breakpoints.
Parameters
----------
xi : array_like
sorted 1D array of x-coordinates
yi : array_like or list of array-likes
yi[i][j] is the j-th derivative known at xi[i]
orders : None or int or array_like of ints. Default: None.
Specifies the degree of local polynomials. If not None, some
derivatives are ignored.
der : int or list
How many derivatives to extract; None for all potentially nonzero
derivatives (that is a number equal to the number of points), or a
list of derivatives to extract. This numberincludes the function
value as 0th derivative.
extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last
intervals, or to return NaNs. Default: True.
See Also
--------
scipy.interpolate.BPoly.from_derivatives
Returns
-------
y : scalar or array_like
The result, of length R or length M or M by R,
"""
import scipy
from scipy import interpolate
if LooseVersion(scipy.__version__) < '0.18.0':
try:
method = interpolate.piecewise_polynomial_interpolate
return method(xi, yi.reshape(-1, 1), x,
orders=order, der=der)
except AttributeError:
pass
# return the method for compat with scipy version & backwards compat
method = interpolate.BPoly.from_derivatives
m = method(xi, yi.reshape(-1, 1),
orders=order, extrapolate=extrapolate)
return m(x)
def _akima_interpolate(xi, yi, x, der=0, axis=0):
"""
Convenience function for akima interpolation.
xi and yi are arrays of values used to approximate some function f,
with ``yi = f(xi)``.
See `Akima1DInterpolator` for details.
Parameters
----------
xi : array_like
A sorted list of x-coordinates, of length N.
yi : array_like
A 1-D array of real values. `yi`'s length along the interpolation
axis must be equal to the length of `xi`. If N-D array, use axis
parameter to select correct axis.
x : scalar or array_like
Of length M.
der : int or list, optional
How many derivatives to extract; None for all potentially
nonzero derivatives (that is a number equal to the number
of points), or a list of derivatives to extract. This number
includes the function value as 0th derivative.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
See Also
--------
scipy.interpolate.Akima1DInterpolator
Returns
-------
y : scalar or array_like
The result, of length R or length M or M by R,
"""
from scipy import interpolate
try:
P = interpolate.Akima1DInterpolator(xi, yi, axis=axis)
except TypeError:
# Scipy earlier than 0.17.0 missing axis
P = interpolate.Akima1DInterpolator(xi, yi)
if der == 0:
return P(x)
elif interpolate._isscalar(der):
return P(x, der=der)
else:
return [P(x, nu) for nu in der]
def interpolate_2d(values, method='pad', axis=0, limit=None, fill_value=None,
dtype=None):
""" perform an actual interpolation of values, values will be make 2-d if
needed fills inplace, returns the result
"""
transf = (lambda x: x) if axis == 0 else (lambda x: x.T)
# reshape a 1 dim if needed
ndim = values.ndim
if values.ndim == 1:
if axis != 0: # pragma: no cover
raise AssertionError("cannot interpolate on a ndim == 1 with "
"axis != 0")
values = values.reshape(tuple((1, ) + values.shape))
if fill_value is None:
mask = None
else: # todo create faster fill func without masking
mask = mask_missing(transf(values), fill_value)
method = clean_fill_method(method)
if method == 'pad':
values = transf(pad_2d(
transf(values), limit=limit, mask=mask, dtype=dtype))
else:
values = transf(backfill_2d(
transf(values), limit=limit, mask=mask, dtype=dtype))
# reshape back
if ndim == 1:
values = values[0]
return values
def _interp_wrapper(f, wrap_dtype, na_override=None):
def wrapper(arr, mask, limit=None):
view = arr.view(wrap_dtype)
f(view, mask, limit=limit)
return wrapper
_pad_1d_datetime = _interp_wrapper(algos.pad_inplace_int64, np.int64)
_pad_2d_datetime = _interp_wrapper(algos.pad_2d_inplace_int64, np.int64)
_backfill_1d_datetime = _interp_wrapper(algos.backfill_inplace_int64, np.int64)
_backfill_2d_datetime = _interp_wrapper(algos.backfill_2d_inplace_int64,
np.int64)
def pad_1d(values, limit=None, mask=None, dtype=None):
if dtype is None:
dtype = values.dtype
_method = None
if is_float_dtype(values):
_method = getattr(algos, 'pad_inplace_%s' % dtype.name, None)
elif dtype in _DATELIKE_DTYPES or is_datetime64_dtype(values):
_method = _pad_1d_datetime
elif is_integer_dtype(values):
values = _ensure_float64(values)
_method = algos.pad_inplace_float64
elif values.dtype == np.object_:
_method = algos.pad_inplace_object
if _method is None:
raise ValueError('Invalid dtype for pad_1d [%s]' % dtype.name)
if mask is None:
mask = isnull(values)
mask = mask.view(np.uint8)
_method(values, mask, limit=limit)
return values
def backfill_1d(values, limit=None, mask=None, dtype=None):
if dtype is None:
dtype = values.dtype
_method = None
if is_float_dtype(values):
_method = getattr(algos, 'backfill_inplace_%s' % dtype.name, None)
elif dtype in _DATELIKE_DTYPES or is_datetime64_dtype(values):
_method = _backfill_1d_datetime
elif is_integer_dtype(values):
values = _ensure_float64(values)
_method = algos.backfill_inplace_float64
elif values.dtype == np.object_:
_method = algos.backfill_inplace_object
if _method is None:
raise ValueError('Invalid dtype for backfill_1d [%s]' % dtype.name)
if mask is None:
mask = isnull(values)
mask = mask.view(np.uint8)
_method(values, mask, limit=limit)
return values
def pad_2d(values, limit=None, mask=None, dtype=None):
if dtype is None:
dtype = values.dtype
_method = None
if is_float_dtype(values):
_method = getattr(algos, 'pad_2d_inplace_%s' % dtype.name, None)
elif dtype in _DATELIKE_DTYPES or is_datetime64_dtype(values):
_method = _pad_2d_datetime
elif is_integer_dtype(values):
values = _ensure_float64(values)
_method = algos.pad_2d_inplace_float64
elif values.dtype == np.object_:
_method = algos.pad_2d_inplace_object
if _method is None:
raise ValueError('Invalid dtype for pad_2d [%s]' % dtype.name)
if mask is None:
mask = isnull(values)
mask = mask.view(np.uint8)
if np.all(values.shape):
_method(values, mask, limit=limit)
else:
# for test coverage
pass
return values
def backfill_2d(values, limit=None, mask=None, dtype=None):
if dtype is None:
dtype = values.dtype
_method = None
if is_float_dtype(values):
_method = getattr(algos, 'backfill_2d_inplace_%s' % dtype.name, None)
elif dtype in _DATELIKE_DTYPES or is_datetime64_dtype(values):
_method = _backfill_2d_datetime
elif is_integer_dtype(values):
values = _ensure_float64(values)
_method = algos.backfill_2d_inplace_float64
elif values.dtype == np.object_:
_method = algos.backfill_2d_inplace_object
if _method is None:
raise ValueError('Invalid dtype for backfill_2d [%s]' % dtype.name)
if mask is None:
mask = isnull(values)
mask = mask.view(np.uint8)
if np.all(values.shape):
_method(values, mask, limit=limit)
else:
# for test coverage
pass
return values
_fill_methods = {'pad': pad_1d, 'backfill': backfill_1d}
def get_fill_func(method):
method = clean_fill_method(method)
return _fill_methods[method]
def clean_reindex_fill_method(method):
return clean_fill_method(method, allow_nearest=True)
def fill_zeros(result, x, y, name, fill):
"""
if this is a reversed op, then flip x,y
if we have an integer value (or array in y)
and we have 0's, fill them with the fill,
return the result
mask the nan's from x
"""
if fill is None or is_float_dtype(result):
return result
if name.startswith(('r', '__r')):
x, y = y, x
is_variable_type = (hasattr(y, 'dtype') or hasattr(y, 'type'))
is_scalar_type = is_scalar(y)
if not is_variable_type and not is_scalar_type:
return result
if is_scalar_type:
y = np.array(y)
if is_integer_dtype(y):
if (y == 0).any():
# GH 7325, mask and nans must be broadcastable (also: PR 9308)
# Raveling and then reshaping makes np.putmask faster
mask = ((y == 0) & ~np.isnan(result)).ravel()
shape = result.shape
result = result.astype('float64', copy=False).ravel()
np.putmask(result, mask, fill)
# if we have a fill of inf, then sign it correctly
# (GH 6178 and PR 9308)
if np.isinf(fill):
signs = np.sign(y if name.startswith(('r', '__r')) else x)
negative_inf_mask = (signs.ravel() < 0) & mask
np.putmask(result, negative_inf_mask, -fill)
if "floordiv" in name: # (PR 9308)
nan_mask = ((y == 0) & (x == 0)).ravel()
np.putmask(result, nan_mask, np.nan)
result = result.reshape(shape)
return result