forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_parser.py
1340 lines (1136 loc) · 44.1 KB
/
base_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
from collections import defaultdict
from copy import copy
import csv
import datetime
from enum import Enum
import itertools
from typing import (
Callable,
DefaultDict,
Hashable,
Iterable,
List,
Mapping,
Sequence,
Tuple,
cast,
final,
overload,
)
import warnings
import numpy as np
import pandas._libs.lib as lib
import pandas._libs.ops as libops
import pandas._libs.parsers as parsers
from pandas._libs.parsers import STR_NA_VALUES
from pandas._libs.tslibs import parsing
from pandas._typing import (
ArrayLike,
DtypeArg,
)
from pandas.errors import (
ParserError,
ParserWarning,
)
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.astype import astype_nansafe
from pandas.core.dtypes.common import (
ensure_object,
is_bool_dtype,
is_categorical_dtype,
is_dict_like,
is_dtype_equal,
is_extension_array_dtype,
is_integer,
is_integer_dtype,
is_list_like,
is_object_dtype,
is_scalar,
is_string_dtype,
pandas_dtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype
from pandas.core.dtypes.missing import isna
from pandas import DataFrame
from pandas.core import algorithms
from pandas.core.arrays import Categorical
from pandas.core.indexes.api import (
Index,
MultiIndex,
ensure_index_from_sequences,
)
from pandas.core.series import Series
from pandas.core.tools import datetimes as tools
from pandas.io.date_converters import generic_parser
class ParserBase:
class BadLineHandleMethod(Enum):
ERROR = 0
WARN = 1
SKIP = 2
_implicit_index: bool = False
_first_chunk: bool
def __init__(self, kwds) -> None:
self.names = kwds.get("names")
self.orig_names: list | None = None
self.prefix = kwds.pop("prefix", None)
self.index_col = kwds.get("index_col", None)
self.unnamed_cols: set = set()
self.index_names: list | None = None
self.col_names = None
self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False))
self._parse_date_cols: Iterable = []
self.date_parser = kwds.pop("date_parser", None)
self.dayfirst = kwds.pop("dayfirst", False)
self.keep_date_col = kwds.pop("keep_date_col", False)
self.na_values = kwds.get("na_values")
self.na_fvalues = kwds.get("na_fvalues")
self.na_filter = kwds.get("na_filter", False)
self.keep_default_na = kwds.get("keep_default_na", True)
self.dtype = copy(kwds.get("dtype", None))
self.converters = kwds.get("converters")
self.true_values = kwds.get("true_values")
self.false_values = kwds.get("false_values")
self.mangle_dupe_cols = kwds.get("mangle_dupe_cols", True)
self.infer_datetime_format = kwds.pop("infer_datetime_format", False)
self.cache_dates = kwds.pop("cache_dates", True)
self._date_conv = _make_date_converter(
date_parser=self.date_parser,
dayfirst=self.dayfirst,
infer_datetime_format=self.infer_datetime_format,
cache_dates=self.cache_dates,
)
# validate header options for mi
self.header = kwds.get("header")
if is_list_like(self.header):
if kwds.get("usecols"):
raise ValueError(
"cannot specify usecols when specifying a multi-index header"
)
if kwds.get("names"):
raise ValueError(
"cannot specify names when specifying a multi-index header"
)
# validate index_col that only contains integers
if self.index_col is not None:
if not (
is_list_like(self.index_col)
and all(map(is_integer, self.index_col))
or is_integer(self.index_col)
):
raise ValueError(
"index_col must only contain row numbers "
"when specifying a multi-index header"
)
elif self.header is not None and self.prefix is not None:
# GH 27394
raise ValueError(
"Argument prefix must be None if argument header is not None"
)
self._name_processed = False
self._first_chunk = True
self.usecols, self.usecols_dtype = self._validate_usecols_arg(kwds["usecols"])
# Fallback to error to pass a sketchy test(test_override_set_noconvert_columns)
# Normally, this arg would get pre-processed earlier on
self.on_bad_lines = kwds.get("on_bad_lines", self.BadLineHandleMethod.ERROR)
def _validate_parse_dates_presence(self, columns: Sequence[Hashable]) -> Iterable:
"""
Check if parse_dates are in columns.
If user has provided names for parse_dates, check if those columns
are available.
Parameters
----------
columns : list
List of names of the dataframe.
Returns
-------
The names of the columns which will get parsed later if a dict or list
is given as specification.
Raises
------
ValueError
If column to parse_date is not in dataframe.
"""
cols_needed: Iterable
if is_dict_like(self.parse_dates):
cols_needed = itertools.chain(*self.parse_dates.values())
elif is_list_like(self.parse_dates):
# a column in parse_dates could be represented
# ColReference = Union[int, str]
# DateGroups = List[ColReference]
# ParseDates = Union[DateGroups, List[DateGroups],
# Dict[ColReference, DateGroups]]
cols_needed = itertools.chain.from_iterable(
col if is_list_like(col) and not isinstance(col, tuple) else [col]
for col in self.parse_dates
)
else:
cols_needed = []
cols_needed = list(cols_needed)
# get only columns that are references using names (str), not by index
missing_cols = ", ".join(
sorted(
{
col
for col in cols_needed
if isinstance(col, str) and col not in columns
}
)
)
if missing_cols:
raise ValueError(
f"Missing column provided to 'parse_dates': '{missing_cols}'"
)
# Convert positions to actual column names
return [
col if (isinstance(col, str) or col in columns) else columns[col]
for col in cols_needed
]
def close(self):
pass
@final
@property
def _has_complex_date_col(self) -> bool:
return isinstance(self.parse_dates, dict) or (
isinstance(self.parse_dates, list)
and len(self.parse_dates) > 0
and isinstance(self.parse_dates[0], list)
)
@final
def _should_parse_dates(self, i: int) -> bool:
if isinstance(self.parse_dates, bool):
return self.parse_dates
else:
if self.index_names is not None:
name = self.index_names[i]
else:
name = None
j = i if self.index_col is None else self.index_col[i]
if is_scalar(self.parse_dates):
return (j == self.parse_dates) or (
name is not None and name == self.parse_dates
)
else:
return (j in self.parse_dates) or (
name is not None and name in self.parse_dates
)
@final
def _extract_multi_indexer_columns(
self,
header,
index_names: list | None,
passed_names: bool = False,
):
"""
Extract and return the names, index_names, col_names if the column
names are a MultiIndex.
Parameters
----------
header: list of lists
The header rows
index_names: list, optional
The names of the future index
passed_names: bool, default False
A flag specifying if names where passed
"""
if len(header) < 2:
return header[0], index_names, None, passed_names
# the names are the tuples of the header that are not the index cols
# 0 is the name of the index, assuming index_col is a list of column
# numbers
ic = self.index_col
if ic is None:
ic = []
if not isinstance(ic, (list, tuple, np.ndarray)):
ic = [ic]
sic = set(ic)
# clean the index_names
index_names = header.pop(-1)
index_names, _, _ = self._clean_index_names(index_names, self.index_col)
# extract the columns
field_count = len(header[0])
# check if header lengths are equal
if not all(len(header_iter) == field_count for header_iter in header[1:]):
raise ParserError("Header rows must have an equal number of columns.")
def extract(r):
return tuple(r[i] for i in range(field_count) if i not in sic)
columns = list(zip(*(extract(r) for r in header)))
names = columns.copy()
for single_ic in sorted(ic):
names.insert(single_ic, single_ic)
# Clean the column names (if we have an index_col).
if len(ic):
col_names = [
r[ic[0]]
if ((r[ic[0]] is not None) and r[ic[0]] not in self.unnamed_cols)
else None
for r in header
]
else:
col_names = [None] * len(header)
passed_names = True
return names, index_names, col_names, passed_names
@final
def _maybe_dedup_names(self, names: Sequence[Hashable]) -> Sequence[Hashable]:
# see gh-7160 and gh-9424: this helps to provide
# immediate alleviation of the duplicate names
# issue and appears to be satisfactory to users,
# but ultimately, not needing to butcher the names
# would be nice!
if self.mangle_dupe_cols:
names = list(names) # so we can index
counts: DefaultDict[Hashable, int] = defaultdict(int)
is_potential_mi = _is_potential_multi_index(names, self.index_col)
for i, col in enumerate(names):
cur_count = counts[col]
while cur_count > 0:
counts[col] = cur_count + 1
if is_potential_mi:
# for mypy
assert isinstance(col, tuple)
col = col[:-1] + (f"{col[-1]}.{cur_count}",)
else:
col = f"{col}.{cur_count}"
cur_count = counts[col]
names[i] = col
counts[col] = cur_count + 1
return names
@final
def _maybe_make_multi_index_columns(
self,
columns: Sequence[Hashable],
col_names: Sequence[Hashable] | None = None,
) -> Sequence[Hashable] | MultiIndex:
# possibly create a column mi here
if _is_potential_multi_index(columns):
list_columns = cast(List[Tuple], columns)
return MultiIndex.from_tuples(list_columns, names=col_names)
return columns
@final
def _make_index(
self, data, alldata, columns, indexnamerow=False
) -> tuple[Index | None, Sequence[Hashable] | MultiIndex]:
index: Index | None
if not is_index_col(self.index_col) or not self.index_col:
index = None
elif not self._has_complex_date_col:
simple_index = self._get_simple_index(alldata, columns)
index = self._agg_index(simple_index)
elif self._has_complex_date_col:
if not self._name_processed:
(self.index_names, _, self.index_col) = self._clean_index_names(
list(columns), self.index_col
)
self._name_processed = True
date_index = self._get_complex_date_index(data, columns)
index = self._agg_index(date_index, try_parse_dates=False)
# add names for the index
if indexnamerow:
coffset = len(indexnamerow) - len(columns)
assert index is not None
index = index.set_names(indexnamerow[:coffset])
# maybe create a mi on the columns
columns = self._maybe_make_multi_index_columns(columns, self.col_names)
return index, columns
@final
def _get_simple_index(self, data, columns):
def ix(col):
if not isinstance(col, str):
return col
raise ValueError(f"Index {col} invalid")
to_remove = []
index = []
for idx in self.index_col:
i = ix(idx)
to_remove.append(i)
index.append(data[i])
# remove index items from content and columns, don't pop in
# loop
for i in sorted(to_remove, reverse=True):
data.pop(i)
if not self._implicit_index:
columns.pop(i)
return index
@final
def _get_complex_date_index(self, data, col_names):
def _get_name(icol):
if isinstance(icol, str):
return icol
if col_names is None:
raise ValueError(f"Must supply column order to use {icol!s} as index")
for i, c in enumerate(col_names):
if i == icol:
return c
to_remove = []
index = []
for idx in self.index_col:
name = _get_name(idx)
to_remove.append(name)
index.append(data[name])
# remove index items from content and columns, don't pop in
# loop
for c in sorted(to_remove, reverse=True):
data.pop(c)
col_names.remove(c)
return index
def _clean_mapping(self, mapping):
"""converts col numbers to names"""
if not isinstance(mapping, dict):
return mapping
clean = {}
# for mypy
assert self.orig_names is not None
for col, v in mapping.items():
if isinstance(col, int) and col not in self.orig_names:
col = self.orig_names[col]
clean[col] = v
if isinstance(mapping, defaultdict):
remaining_cols = set(self.orig_names) - set(clean.keys())
clean.update({col: mapping[col] for col in remaining_cols})
return clean
@final
def _agg_index(self, index, try_parse_dates: bool = True) -> Index:
arrays = []
converters = self._clean_mapping(self.converters)
for i, arr in enumerate(index):
if try_parse_dates and self._should_parse_dates(i):
arr = self._date_conv(arr)
if self.na_filter:
col_na_values = self.na_values
col_na_fvalues = self.na_fvalues
else:
col_na_values = set()
col_na_fvalues = set()
if isinstance(self.na_values, dict):
assert self.index_names is not None
col_name = self.index_names[i]
if col_name is not None:
col_na_values, col_na_fvalues = _get_na_values(
col_name, self.na_values, self.na_fvalues, self.keep_default_na
)
clean_dtypes = self._clean_mapping(self.dtype)
cast_type = None
index_converter = False
if self.index_names is not None:
if isinstance(clean_dtypes, dict):
cast_type = clean_dtypes.get(self.index_names[i], None)
if isinstance(converters, dict):
index_converter = converters.get(self.index_names[i]) is not None
try_num_bool = not (
cast_type and is_string_dtype(cast_type) or index_converter
)
arr, _ = self._infer_types(
arr, col_na_values | col_na_fvalues, try_num_bool
)
arrays.append(arr)
names = self.index_names
index = ensure_index_from_sequences(arrays, names)
return index
@final
def _convert_to_ndarrays(
self,
dct: Mapping,
na_values,
na_fvalues,
verbose: bool = False,
converters=None,
dtypes=None,
):
result = {}
for c, values in dct.items():
conv_f = None if converters is None else converters.get(c, None)
if isinstance(dtypes, dict):
cast_type = dtypes.get(c, None)
else:
# single dtype or None
cast_type = dtypes
if self.na_filter:
col_na_values, col_na_fvalues = _get_na_values(
c, na_values, na_fvalues, self.keep_default_na
)
else:
col_na_values, col_na_fvalues = set(), set()
if c in self._parse_date_cols:
# GH#26203 Do not convert columns which get converted to dates
# but replace nans to ensure to_datetime works
mask = algorithms.isin(values, set(col_na_values) | col_na_fvalues)
np.putmask(values, mask, np.nan)
result[c] = values
continue
if conv_f is not None:
# conv_f applied to data before inference
if cast_type is not None:
warnings.warn(
(
"Both a converter and dtype were specified "
f"for column {c} - only the converter will be used."
),
ParserWarning,
stacklevel=find_stack_level(),
)
try:
values = lib.map_infer(values, conv_f)
except ValueError:
# error: Argument 2 to "isin" has incompatible type "List[Any]";
# expected "Union[Union[ExtensionArray, ndarray], Index, Series]"
mask = algorithms.isin(
values, list(na_values) # type: ignore[arg-type]
).view(np.uint8)
values = lib.map_infer_mask(values, conv_f, mask)
cvals, na_count = self._infer_types(
values, set(col_na_values) | col_na_fvalues, try_num_bool=False
)
else:
is_ea = is_extension_array_dtype(cast_type)
is_str_or_ea_dtype = is_ea or is_string_dtype(cast_type)
# skip inference if specified dtype is object
# or casting to an EA
try_num_bool = not (cast_type and is_str_or_ea_dtype)
# general type inference and conversion
cvals, na_count = self._infer_types(
values, set(col_na_values) | col_na_fvalues, try_num_bool
)
# type specified in dtype param or cast_type is an EA
if cast_type and (
not is_dtype_equal(cvals, cast_type)
or is_extension_array_dtype(cast_type)
):
if not is_ea and na_count > 0:
try:
if is_bool_dtype(cast_type):
raise ValueError(
f"Bool column has NA values in column {c}"
)
except (AttributeError, TypeError):
# invalid input to is_bool_dtype
pass
cast_type = pandas_dtype(cast_type)
cvals = self._cast_types(cvals, cast_type, c)
result[c] = cvals
if verbose and na_count:
print(f"Filled {na_count} NA values in column {c!s}")
return result
@final
def _set_noconvert_dtype_columns(
self, col_indices: list[int], names: Sequence[Hashable]
) -> set[int]:
"""
Set the columns that should not undergo dtype conversions.
Currently, any column that is involved with date parsing will not
undergo such conversions. If usecols is specified, the positions of the columns
not to cast is relative to the usecols not to all columns.
Parameters
----------
col_indices: The indices specifying order and positions of the columns
names: The column names which order is corresponding with the order
of col_indices
Returns
-------
A set of integers containing the positions of the columns not to convert.
"""
usecols: list[int] | list[str] | None
noconvert_columns = set()
if self.usecols_dtype == "integer":
# A set of integers will be converted to a list in
# the correct order every single time.
usecols = sorted(self.usecols)
elif callable(self.usecols) or self.usecols_dtype not in ("empty", None):
# The names attribute should have the correct columns
# in the proper order for indexing with parse_dates.
usecols = col_indices
else:
# Usecols is empty.
usecols = None
def _set(x) -> int:
if usecols is not None and is_integer(x):
x = usecols[x]
if not is_integer(x):
x = col_indices[names.index(x)]
return x
if isinstance(self.parse_dates, list):
for val in self.parse_dates:
if isinstance(val, list):
for k in val:
noconvert_columns.add(_set(k))
else:
noconvert_columns.add(_set(val))
elif isinstance(self.parse_dates, dict):
for val in self.parse_dates.values():
if isinstance(val, list):
for k in val:
noconvert_columns.add(_set(k))
else:
noconvert_columns.add(_set(val))
elif self.parse_dates:
if isinstance(self.index_col, list):
for k in self.index_col:
noconvert_columns.add(_set(k))
elif self.index_col is not None:
noconvert_columns.add(_set(self.index_col))
return noconvert_columns
def _infer_types(self, values, na_values, try_num_bool=True):
"""
Infer types of values, possibly casting
Parameters
----------
values : ndarray
na_values : set
try_num_bool : bool, default try
try to cast values to numeric (first preference) or boolean
Returns
-------
converted : ndarray
na_count : int
"""
na_count = 0
if issubclass(values.dtype.type, (np.number, np.bool_)):
# If our array has numeric dtype, we don't have to check for strings in isin
na_values = np.array([val for val in na_values if not isinstance(val, str)])
mask = algorithms.isin(values, na_values)
na_count = mask.astype("uint8", copy=False).sum()
if na_count > 0:
if is_integer_dtype(values):
values = values.astype(np.float64)
np.putmask(values, mask, np.nan)
return values, na_count
if try_num_bool and is_object_dtype(values.dtype):
# exclude e.g DatetimeIndex here
try:
result, _ = lib.maybe_convert_numeric(values, na_values, False)
except (ValueError, TypeError):
# e.g. encountering datetime string gets ValueError
# TypeError can be raised in floatify
result = values
na_count = parsers.sanitize_objects(result, na_values)
else:
na_count = isna(result).sum()
else:
result = values
if values.dtype == np.object_:
na_count = parsers.sanitize_objects(values, na_values)
if result.dtype == np.object_ and try_num_bool:
result, _ = libops.maybe_convert_bool(
np.asarray(values),
true_values=self.true_values,
false_values=self.false_values,
)
return result, na_count
def _cast_types(self, values, cast_type, column):
"""
Cast values to specified type
Parameters
----------
values : ndarray
cast_type : string or np.dtype
dtype to cast values to
column : string
column name - used only for error reporting
Returns
-------
converted : ndarray
"""
if is_categorical_dtype(cast_type):
known_cats = (
isinstance(cast_type, CategoricalDtype)
and cast_type.categories is not None
)
if not is_object_dtype(values) and not known_cats:
# TODO: this is for consistency with
# c-parser which parses all categories
# as strings
values = astype_nansafe(values, np.dtype(str))
cats = Index(values).unique().dropna()
values = Categorical._from_inferred_categories(
cats, cats.get_indexer(values), cast_type, true_values=self.true_values
)
# use the EA's implementation of casting
elif is_extension_array_dtype(cast_type):
# ensure cast_type is an actual dtype and not a string
cast_type = pandas_dtype(cast_type)
array_type = cast_type.construct_array_type()
try:
if is_bool_dtype(cast_type):
return array_type._from_sequence_of_strings(
values,
dtype=cast_type,
true_values=self.true_values,
false_values=self.false_values,
)
else:
return array_type._from_sequence_of_strings(values, dtype=cast_type)
except NotImplementedError as err:
raise NotImplementedError(
f"Extension Array: {array_type} must implement "
"_from_sequence_of_strings in order to be used in parser methods"
) from err
else:
try:
values = astype_nansafe(values, cast_type, copy=True, skipna=True)
except ValueError as err:
raise ValueError(
f"Unable to convert column {column} to type {cast_type}"
) from err
return values
@overload
def _do_date_conversions(
self,
names: Index,
data: DataFrame,
) -> tuple[Sequence[Hashable] | Index, DataFrame]:
...
@overload
def _do_date_conversions(
self,
names: Sequence[Hashable],
data: Mapping[Hashable, ArrayLike],
) -> tuple[Sequence[Hashable], Mapping[Hashable, ArrayLike]]:
...
def _do_date_conversions(
self,
names: Sequence[Hashable] | Index,
data: Mapping[Hashable, ArrayLike] | DataFrame,
) -> tuple[Sequence[Hashable] | Index, Mapping[Hashable, ArrayLike] | DataFrame]:
# returns data, columns
if self.parse_dates is not None:
data, names = _process_date_conversion(
data,
self._date_conv,
self.parse_dates,
self.index_col,
self.index_names,
names,
keep_date_col=self.keep_date_col,
)
return names, data
def _check_data_length(
self,
columns: Sequence[Hashable],
data: Sequence[ArrayLike],
) -> None:
"""Checks if length of data is equal to length of column names.
One set of trailing commas is allowed. self.index_col not False
results in a ParserError previously when lengths do not match.
Parameters
----------
columns: list of column names
data: list of array-likes containing the data column-wise.
"""
if not self.index_col and len(columns) != len(data) and columns:
empty_str = is_object_dtype(data[-1]) and data[-1] == ""
# error: No overload variant of "__ror__" of "ndarray" matches
# argument type "ExtensionArray"
empty_str_or_na = empty_str | isna(data[-1]) # type: ignore[operator]
if len(columns) == len(data) - 1 and np.all(empty_str_or_na):
return
warnings.warn(
"Length of header or names does not match length of data. This leads "
"to a loss of data with index_col=False.",
ParserWarning,
stacklevel=find_stack_level(),
)
@overload
def _evaluate_usecols(
self,
usecols: set[int] | Callable[[Hashable], object],
names: Sequence[Hashable],
) -> set[int]:
...
@overload
def _evaluate_usecols(
self, usecols: set[str], names: Sequence[Hashable]
) -> set[str]:
...
def _evaluate_usecols(
self,
usecols: Callable[[Hashable], object] | set[str] | set[int],
names: Sequence[Hashable],
) -> set[str] | set[int]:
"""
Check whether or not the 'usecols' parameter
is a callable. If so, enumerates the 'names'
parameter and returns a set of indices for
each entry in 'names' that evaluates to True.
If not a callable, returns 'usecols'.
"""
if callable(usecols):
return {i for i, name in enumerate(names) if usecols(name)}
return usecols
def _validate_usecols_names(self, usecols, names):
"""
Validates that all usecols are present in a given
list of names. If not, raise a ValueError that
shows what usecols are missing.
Parameters
----------
usecols : iterable of usecols
The columns to validate are present in names.
names : iterable of names
The column names to check against.
Returns
-------
usecols : iterable of usecols
The `usecols` parameter if the validation succeeds.
Raises
------
ValueError : Columns were missing. Error message will list them.
"""
missing = [c for c in usecols if c not in names]
if len(missing) > 0:
raise ValueError(
f"Usecols do not match columns, columns expected but not found: "
f"{missing}"
)
return usecols
def _validate_usecols_arg(self, usecols):
"""
Validate the 'usecols' parameter.
Checks whether or not the 'usecols' parameter contains all integers
(column selection by index), strings (column by name) or is a callable.
Raises a ValueError if that is not the case.
Parameters
----------
usecols : list-like, callable, or None
List of columns to use when parsing or a callable that can be used
to filter a list of table columns.
Returns
-------
usecols_tuple : tuple
A tuple of (verified_usecols, usecols_dtype).
'verified_usecols' is either a set if an array-like is passed in or
'usecols' if a callable or None is passed in.
'usecols_dtype` is the inferred dtype of 'usecols' if an array-like
is passed in or None if a callable or None is passed in.
"""
msg = (
"'usecols' must either be list-like of all strings, all unicode, "
"all integers or a callable."
)
if usecols is not None:
if callable(usecols):
return usecols, None
if not is_list_like(usecols):
# see gh-20529
#
# Ensure it is iterable container but not string.
raise ValueError(msg)
usecols_dtype = lib.infer_dtype(usecols, skipna=False)
if usecols_dtype not in ("empty", "integer", "string"):
raise ValueError(msg)
usecols = set(usecols)
return usecols, usecols_dtype
return usecols, None
def _clean_index_names(self, columns, index_col):
if not is_index_col(index_col):
return None, columns, index_col
columns = list(columns)
# In case of no rows and multiindex columns we have to set index_names to
# list of Nones GH#38292
if not columns:
return [None] * len(index_col), columns, index_col
cp_cols = list(columns)
index_names: list[str | int | None] = []
# don't mutate
index_col = list(index_col)
for i, c in enumerate(index_col):
if isinstance(c, str):
index_names.append(c)
for j, name in enumerate(cp_cols):
if name == c:
index_col[i] = j
columns.remove(name)
break
else:
name = cp_cols[c]
columns.remove(name)
index_names.append(name)
# Only clean index names that were placeholders.
for i, name in enumerate(index_names):
if isinstance(name, str) and name in self.unnamed_cols: