{{ header }}
.. ipython:: python import pandas as pd
.. ipython:: python titanic = pd.read_csv("data/titanic.csv") titanic.head()
I’m interested in the age of the Titanic passengers.
.. ipython:: python ages = titanic["Age"] ages.head()
To select a single column, use square brackets
[]
with the column name of the column of interest.
Each column in a :class:`DataFrame` is a :class:`Series`. As a single column is selected, the returned object is a pandas :class:`Series`. We can verify this by checking the type of the output:
.. ipython:: python type(titanic["Age"])
And have a look at the shape
of the output:
.. ipython:: python titanic["Age"].shape
:attr:`DataFrame.shape` is an attribute (remember :ref:`tutorial on reading and writing <10min_tut_02_read_write>`, do not use parentheses for attributes) of a
pandas Series
and DataFrame
containing the number of rows and
columns: (nrows, ncolumns). A pandas Series is 1-dimensional and only
the number of rows is returned.
I’m interested in the age and sex of the Titanic passengers.
.. ipython:: python age_sex = titanic[["Age", "Sex"]] age_sex.head()
To select multiple columns, use a list of column names within the selection brackets
[]
.
Note
The inner square brackets define a
:ref:`Python list <python:tut-morelists>` with column names, whereas
the outer brackets are used to select the data from a pandas
DataFrame
as seen in the previous example.
The returned data type is a pandas DataFrame:
.. ipython:: python type(titanic[["Age", "Sex"]])
.. ipython:: python titanic[["Age", "Sex"]].shape
The selection returned a DataFrame
with 891 rows and 2 columns. Remember, a
DataFrame
is 2-dimensional with both a row and column dimension.
For basic information on indexing, see the user guide section on :ref:`indexing and selecting data <indexing.basics>`.
I’m interested in the passengers older than 35 years.
.. ipython:: python above_35 = titanic[titanic["Age"] > 35] above_35.head()
To select rows based on a conditional expression, use a condition inside the selection brackets
[]
.
The condition inside the selection
brackets titanic["Age"] > 35
checks for which rows the Age
column has a value larger than 35:
.. ipython:: python titanic["Age"] > 35
The output of the conditional expression (>
, but also ==
,
!=
, <
, <=
,… would work) is actually a pandas Series
of
boolean values (either True
or False
) with the same number of
rows as the original DataFrame
. Such a Series
of boolean values
can be used to filter the DataFrame
by putting it in between the
selection brackets []
. Only rows for which the value is True
will be selected.
We know from before that the original Titanic DataFrame
consists of
891 rows. Let’s have a look at the number of rows which satisfy the
condition by checking the shape
attribute of the resulting
DataFrame
above_35
:
.. ipython:: python above_35.shape
I’m interested in the Titanic passengers from cabin class 2 and 3.
.. ipython:: python class_23 = titanic[titanic["Pclass"].isin([2, 3])] class_23.head()
Similar to the conditional expression, the :func:`~Series.isin` conditional function returns a
True
for each row the values are in the provided list. To filter the rows based on such a function, use the conditional function inside the selection brackets[]
. In this case, the condition inside the selection bracketstitanic["Pclass"].isin([2, 3])
checks for which rows thePclass
column is either 2 or 3.
The above is equivalent to filtering by rows for which the class is
either 2 or 3 and combining the two statements with an |
(or)
operator:
.. ipython:: python class_23 = titanic[(titanic["Pclass"] == 2) | (titanic["Pclass"] == 3)] class_23.head()
Note
When combining multiple conditional statements, each condition
must be surrounded by parentheses ()
. Moreover, you can not use
or
/and
but need to use the or
operator |
and the and
operator &
.
See the dedicated section in the user guide about :ref:`boolean indexing <indexing.boolean>` or about the :ref:`isin function <indexing.basics.indexing_isin>`.
I want to work with passenger data for which the age is known.
.. ipython:: python age_no_na = titanic[titanic["Age"].notna()] age_no_na.head()
The :meth:`~Series.notna` conditional function returns a
True
for each row the values are not anNull
value. As such, this can be combined with the selection brackets[]
to filter the data table.
You might wonder what actually changed, as the first 5 lines are still the same values. One way to verify is to check if the shape has changed:
.. ipython:: python age_no_na.shape
For more dedicated functions on missing values, see the user guide section about :ref:`handling missing data <missing_data>`.
I’m interested in the names of the passengers older than 35 years.
.. ipython:: python adult_names = titanic.loc[titanic["Age"] > 35, "Name"] adult_names.head()
In this case, a subset of both rows and columns is made in one go and just using selection brackets
[]
is not sufficient anymore. Theloc
/iloc
operators are required in front of the selection brackets[]
. When usingloc
/iloc
, the part before the comma is the rows you want, and the part after the comma is the columns you want to select.
When using the column names, row labels or a condition expression, use
the loc
operator in front of the selection brackets []
. For both
the part before and after the comma, you can use a single label, a list
of labels, a slice of labels, a conditional expression or a colon. Using
a colon specifies you want to select all rows or columns.
I’m interested in rows 10 till 25 and columns 3 to 5.
.. ipython:: python titanic.iloc[9:25, 2:5]
Again, a subset of both rows and columns is made in one go and just using selection brackets
[]
is not sufficient anymore. When specifically interested in certain rows and/or columns based on their position in the table, use theiloc
operator in front of the selection brackets[]
.
When selecting specific rows and/or columns with loc
or iloc
,
new values can be assigned to the selected data. For example, to assign
the name anonymous
to the first 3 elements of the third column:
.. ipython:: python titanic.iloc[0:3, 3] = "anonymous" titanic.head()
See the user guide section on :ref:`different choices for indexing <indexing.choice>` to get more insight in the usage of loc
and iloc
.
- When selecting subsets of data, square brackets
[]
are used. - Inside these brackets, you can use a single column/row label, a list of column/row labels, a slice of labels, a conditional expression or a colon.
- Select specific rows and/or columns using
loc
when using the row and column names - Select specific rows and/or columns using
iloc
when using the positions in the table - You can assign new values to a selection based on
loc
/iloc
.
A full overview of indexing is provided in the user guide pages on :ref:`indexing and selecting data <indexing>`.