Skip to content

Files

Latest commit

5c3352e · Mar 11, 2022

History

History
236 lines (196 loc) · 7.2 KB

table.md

File metadata and controls

236 lines (196 loc) · 7.2 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.2
1.6.0
display_name language name
Python 3
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.7.6
description display_as language layout name order page_type permalink thumbnail
How to make tables in Python with Plotly.
basic
python
base
Tables
11
u-guide
python/table/
thumbnail/table.gif

go.Table provides a Table object for detailed data viewing. The data are arranged in a grid of rows and columns. Most styling can be specified for header, columns, rows or individual cells. Table is using a column-major order, ie. the grid is represented as a vector of column vectors.

Note that Dash provides a different type of DataTable.

Basic Table

import plotly.graph_objects as go

fig = go.Figure(data=[go.Table(header=dict(values=['A Scores', 'B Scores']),
                 cells=dict(values=[[100, 90, 80, 90], [95, 85, 75, 95]]))
                     ])
fig.show()

Styled Table

import plotly.graph_objects as go

fig = go.Figure(data=[go.Table(
    header=dict(values=['A Scores', 'B Scores'],
                line_color='darkslategray',
                fill_color='lightskyblue',
                align='left'),
    cells=dict(values=[[100, 90, 80, 90], # 1st column
                       [95, 85, 75, 95]], # 2nd column
               line_color='darkslategray',
               fill_color='lightcyan',
               align='left'))
])

fig.update_layout(width=500, height=300)
fig.show()

Use a Pandas Dataframe

import plotly.graph_objects as go
import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_usa_states.csv')

fig = go.Figure(data=[go.Table(
    header=dict(values=list(df.columns),
                fill_color='paleturquoise',
                align='left'),
    cells=dict(values=[df.Rank, df.State, df.Postal, df.Population],
               fill_color='lavender',
               align='left'))
])

fig.show()

Tables in Dash

Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash, click "Download" to get the code and run python app.py.

Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.

from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'table', width='100%', height=1200)

Changing Row and Column Size

import plotly.graph_objects as go

values = [['Salaries', 'Office', 'Merchandise', 'Legal', '<b>TOTAL<br>EXPENSES</b>'], #1st col
  ["Lorem ipsum dolor sit amet, tollit discere inermis pri ut. Eos ea iusto timeam, an prima laboramus vim. Id usu aeterno adversarium, summo mollis timeam vel ad",
  "Lorem ipsum dolor sit amet, tollit discere inermis pri ut. Eos ea iusto timeam, an prima laboramus vim. Id usu aeterno adversarium, summo mollis timeam vel ad",
  "Lorem ipsum dolor sit amet, tollit discere inermis pri ut. Eos ea iusto timeam, an prima laboramus vim. Id usu aeterno adversarium, summo mollis timeam vel ad",
  "Lorem ipsum dolor sit amet, tollit discere inermis pri ut. Eos ea iusto timeam, an prima laboramus vim. Id usu aeterno adversarium, summo mollis timeam vel ad",
  "Lorem ipsum dolor sit amet, tollit discere inermis pri ut. Eos ea iusto timeam, an prima laboramus vim. Id usu aeterno adversarium, summo mollis timeam vel ad"]]


fig = go.Figure(data=[go.Table(
  columnorder = [1,2],
  columnwidth = [80,400],
  header = dict(
    values = [['<b>EXPENSES</b><br>as of July 2017'],
                  ['<b>DESCRIPTION</b>']],
    line_color='darkslategray',
    fill_color='royalblue',
    align=['left','center'],
    font=dict(color='white', size=12),
    height=40
  ),
  cells=dict(
    values=values,
    line_color='darkslategray',
    fill=dict(color=['paleturquoise', 'white']),
    align=['left', 'center'],
    font_size=12,
    height=30)
    )
])
fig.show()

Alternating Row Colors

import plotly.graph_objects as go

headerColor = 'grey'
rowEvenColor = 'lightgrey'
rowOddColor = 'white'

fig = go.Figure(data=[go.Table(
  header=dict(
    values=['<b>EXPENSES</b>','<b>Q1</b>','<b>Q2</b>','<b>Q3</b>','<b>Q4</b>'],
    line_color='darkslategray',
    fill_color=headerColor,
    align=['left','center'],
    font=dict(color='white', size=12)
  ),
  cells=dict(
    values=[
      ['Salaries', 'Office', 'Merchandise', 'Legal', '<b>TOTAL</b>'],
      [1200000, 20000, 80000, 2000, 12120000],
      [1300000, 20000, 70000, 2000, 130902000],
      [1300000, 20000, 120000, 2000, 131222000],
      [1400000, 20000, 90000, 2000, 14102000]],
    line_color='darkslategray',
    # 2-D list of colors for alternating rows
    fill_color = [[rowOddColor,rowEvenColor,rowOddColor, rowEvenColor,rowOddColor]*5],
    align = ['left', 'center'],
    font = dict(color = 'darkslategray', size = 11)
    ))
])

fig.show()

Row Color Based on Variable

import plotly.graph_objects as go

import pandas as pd

colors = ['rgb(239, 243, 255)', 'rgb(189, 215, 231)', 'rgb(107, 174, 214)',
          'rgb(49, 130, 189)', 'rgb(8, 81, 156)']
data = {'Year' : [2010, 2011, 2012, 2013, 2014], 'Color' : colors}
df = pd.DataFrame(data)

fig = go.Figure(data=[go.Table(
  header=dict(
    values=["Color", "<b>YEAR</b>"],
    line_color='white', fill_color='white',
    align='center', font=dict(color='black', size=12)
  ),
  cells=dict(
    values=[df.Color, df.Year],
    line_color=[df.Color], fill_color=[df.Color],
    align='center', font=dict(color='black', size=11)
  ))
])

fig.show()

Cell Color Based on Variable

import plotly.graph_objects as go
from plotly.colors import n_colors
import numpy as np
np.random.seed(1)

colors = n_colors('rgb(255, 200, 200)', 'rgb(200, 0, 0)', 9, colortype='rgb')
a = np.random.randint(low=0, high=9, size=10)
b = np.random.randint(low=0, high=9, size=10)
c = np.random.randint(low=0, high=9, size=10)

fig = go.Figure(data=[go.Table(
  header=dict(
    values=['<b>Column A</b>', '<b>Column B</b>', '<b>Column C</b>'],
    line_color='white', fill_color='white',
    align='center',font=dict(color='black', size=12)
  ),
  cells=dict(
    values=[a, b, c],
    line_color=[np.array(colors)[a],np.array(colors)[b], np.array(colors)[c]],
    fill_color=[np.array(colors)[a],np.array(colors)[b], np.array(colors)[c]],
    align='center', font=dict(color='white', size=11)
    ))
])

fig.show()

Reference

For more information on tables and table attributes see: https://plotly.com/python/reference/table/.