|
| 1 | +""" |
| 2 | +RASTER EYES for Adafruit Matrix Portal: animated spooky eyes. |
| 3 | +""" |
| 4 | + |
| 5 | +# pylint: disable=import-error |
| 6 | +import math |
| 7 | +import random |
| 8 | +import time |
| 9 | +import displayio |
| 10 | +import adafruit_imageload |
| 11 | +from adafruit_matrixportal.matrix import Matrix |
| 12 | + |
| 13 | +# TO LOAD DIFFERENT EYE DESIGNS: change the middle word here (between |
| 14 | +# 'eyes.' and '.data') to one of the folder names inside the 'eyes' folder: |
| 15 | +from eyes.werewolf.data import EYE_DATA |
| 16 | +#from eyes.cyclops.data import EYE_DATA |
| 17 | +#from eyes.kobold.data import EYE_DATA |
| 18 | + |
| 19 | +# UTILITY FUNCTIONS AND CLASSES -------------------------------------------- |
| 20 | + |
| 21 | +# pylint: disable=too-few-public-methods |
| 22 | +class Sprite(displayio.TileGrid): |
| 23 | + """Single-tile-with-bitmap TileGrid subclass, adds a height element |
| 24 | + because TileGrid doesn't appear to have a way to poll that later, |
| 25 | + object still functions in a displayio.Group. |
| 26 | + """ |
| 27 | + def __init__(self, filename, transparent=None): |
| 28 | + """Create Sprite object from color-paletted BMP file, optionally |
| 29 | + set one color to transparent (pass as RGB tuple or list to locate |
| 30 | + nearest color, or integer to use a known specific color index). |
| 31 | + """ |
| 32 | + bitmap, palette = adafruit_imageload.load( |
| 33 | + filename, bitmap=displayio.Bitmap, palette=displayio.Palette) |
| 34 | + if isinstance(transparent, (tuple, list)): # Find closest RGB match |
| 35 | + closest_distance = 0x1000000 # Force first match |
| 36 | + for color_index, color in enumerate(palette): # Compare each... |
| 37 | + delta = (transparent[0] - ((color >> 16) & 0xFF), |
| 38 | + transparent[1] - ((color >> 8) & 0xFF), |
| 39 | + transparent[2] - (color & 0xFF)) |
| 40 | + rgb_distance = (delta[0] * delta[0] + |
| 41 | + delta[1] * delta[1] + |
| 42 | + delta[2] * delta[2]) # Actually dist^2 |
| 43 | + if rgb_distance < closest_distance: # but adequate for |
| 44 | + closest_distance = rgb_distance # compare purposes, |
| 45 | + closest_index = color_index # no sqrt needed |
| 46 | + palette.make_transparent(closest_index) |
| 47 | + elif isinstance(transparent, int): |
| 48 | + palette.make_transparent(transparent) |
| 49 | + super(Sprite, self).__init__(bitmap, pixel_shader=palette) |
| 50 | + self.height = bitmap.height |
| 51 | + |
| 52 | + |
| 53 | +# ONE-TIME INITIALIZATION -------------------------------------------------- |
| 54 | + |
| 55 | +MATRIX = Matrix(bit_depth=6) |
| 56 | +DISPLAY = MATRIX.display |
| 57 | + |
| 58 | +# Order in which sprites are added determines the 'stacking order' and |
| 59 | +# visual priority. Lower lid is added before the upper lid so that if they |
| 60 | +# overlap, the upper lid is 'on top' (e.g. if it has eyelashes or such). |
| 61 | +SPRITES = displayio.Group() |
| 62 | +SPRITES.append(Sprite(EYE_DATA['eye_image'])) # Base image is opaque |
| 63 | +SPRITES.append(Sprite(EYE_DATA['lower_lid_image'], EYE_DATA['transparent'])) |
| 64 | +SPRITES.append(Sprite(EYE_DATA['upper_lid_image'], EYE_DATA['transparent'])) |
| 65 | +SPRITES.append(Sprite(EYE_DATA['stencil_image'], EYE_DATA['transparent'])) |
| 66 | +DISPLAY.show(SPRITES) |
| 67 | + |
| 68 | +EYE_CENTER = ((EYE_DATA['eye_move_min'][0] + # Pixel coords of eye |
| 69 | + EYE_DATA['eye_move_max'][0]) / 2, # image when centered |
| 70 | + (EYE_DATA['eye_move_min'][1] + # ('neutral' position) |
| 71 | + EYE_DATA['eye_move_max'][1]) / 2) |
| 72 | +EYE_RANGE = (abs(EYE_DATA['eye_move_max'][0] - # Max eye image motion |
| 73 | + EYE_DATA['eye_move_min'][0]) / 2, # delta from center |
| 74 | + abs(EYE_DATA['eye_move_max'][1] - |
| 75 | + EYE_DATA['eye_move_min'][1]) / 2) |
| 76 | +UPPER_LID_MIN = (min(EYE_DATA['upper_lid_open'][0], # Motion bounds of |
| 77 | + EYE_DATA['upper_lid_closed'][0]), # upper and lower |
| 78 | + min(EYE_DATA['upper_lid_open'][1], # eyelids |
| 79 | + EYE_DATA['upper_lid_closed'][1])) |
| 80 | +UPPER_LID_MAX = (max(EYE_DATA['upper_lid_open'][0], |
| 81 | + EYE_DATA['upper_lid_closed'][0]), |
| 82 | + max(EYE_DATA['upper_lid_open'][1], |
| 83 | + EYE_DATA['upper_lid_closed'][1])) |
| 84 | +LOWER_LID_MIN = (min(EYE_DATA['lower_lid_open'][0], |
| 85 | + EYE_DATA['lower_lid_closed'][0]), |
| 86 | + min(EYE_DATA['lower_lid_open'][1], |
| 87 | + EYE_DATA['lower_lid_closed'][1])) |
| 88 | +LOWER_LID_MAX = (max(EYE_DATA['lower_lid_open'][0], |
| 89 | + EYE_DATA['lower_lid_closed'][0]), |
| 90 | + max(EYE_DATA['lower_lid_open'][1], |
| 91 | + EYE_DATA['lower_lid_closed'][1])) |
| 92 | +EYE_PREV = EYE_CENTER |
| 93 | +EYE_NEXT = EYE_CENTER |
| 94 | +MOVE_STATE = False # Initially stationary |
| 95 | +MOVE_EVENT_DURATION = random.uniform(0.1, 3) # Time to first move |
| 96 | +BLINK_STATE = 2 # Start eyes closed |
| 97 | +BLINK_EVENT_DURATION = random.uniform(0.25, 0.5) # Time for eyes to open |
| 98 | +TIME_OF_LAST_MOVE_EVENT = TIME_OF_LAST_BLINK_EVENT = time.monotonic() |
| 99 | + |
| 100 | + |
| 101 | +# MAIN LOOP ---------------------------------------------------------------- |
| 102 | + |
| 103 | +while True: |
| 104 | + NOW = time.monotonic() |
| 105 | + |
| 106 | + # Eye movement --------------------------------------------------------- |
| 107 | + |
| 108 | + if NOW - TIME_OF_LAST_MOVE_EVENT > MOVE_EVENT_DURATION: |
| 109 | + TIME_OF_LAST_MOVE_EVENT = NOW # Start new move or pause |
| 110 | + MOVE_STATE = not MOVE_STATE # Toggle between moving & stationary |
| 111 | + if MOVE_STATE: # Starting a new move? |
| 112 | + MOVE_EVENT_DURATION = random.uniform(0.08, 0.17) # Move time |
| 113 | + ANGLE = random.uniform(0, math.pi * 2) |
| 114 | + EYE_NEXT = (math.cos(ANGLE) * EYE_RANGE[0], # (0,0) in center, |
| 115 | + math.sin(ANGLE) * EYE_RANGE[1]) # NOT pixel coords |
| 116 | + else: # Starting a new pause |
| 117 | + MOVE_EVENT_DURATION = random.uniform(0.04, 3) # Hold time |
| 118 | + EYE_PREV = EYE_NEXT |
| 119 | + |
| 120 | + # Fraction of move elapsed (0.0 to 1.0), then ease in/out 3*e^2-2*e^3 |
| 121 | + RATIO = (NOW - TIME_OF_LAST_MOVE_EVENT) / MOVE_EVENT_DURATION |
| 122 | + RATIO = 3 * RATIO * RATIO - 2 * RATIO * RATIO * RATIO |
| 123 | + EYE_POS = (EYE_PREV[0] + RATIO * (EYE_NEXT[0] - EYE_PREV[0]), |
| 124 | + EYE_PREV[1] + RATIO * (EYE_NEXT[1] - EYE_PREV[1])) |
| 125 | + |
| 126 | + # Blinking ------------------------------------------------------------- |
| 127 | + |
| 128 | + if NOW - TIME_OF_LAST_BLINK_EVENT > BLINK_EVENT_DURATION: |
| 129 | + TIME_OF_LAST_BLINK_EVENT = NOW # Start change in blink |
| 130 | + BLINK_STATE += 1 # Cycle paused/closing/opening |
| 131 | + if BLINK_STATE == 1: # Starting a new blink (closing) |
| 132 | + BLINK_EVENT_DURATION = random.uniform(0.03, 0.07) |
| 133 | + elif BLINK_STATE == 2: # Starting de-blink (opening) |
| 134 | + BLINK_EVENT_DURATION *= 2 |
| 135 | + else: # Blink ended, |
| 136 | + BLINK_STATE = 0 # paused |
| 137 | + BLINK_EVENT_DURATION = random.uniform(BLINK_EVENT_DURATION * 3, 4) |
| 138 | + |
| 139 | + if BLINK_STATE: # Currently in a blink? |
| 140 | + # Fraction of closing or opening elapsed (0.0 to 1.0) |
| 141 | + RATIO = (NOW - TIME_OF_LAST_BLINK_EVENT) / BLINK_EVENT_DURATION |
| 142 | + if BLINK_STATE == 2: # Opening |
| 143 | + RATIO = 1.0 - RATIO # Flip ratio so eye opens instead of closes |
| 144 | + else: # Not blinking |
| 145 | + RATIO = 0 |
| 146 | + |
| 147 | + # Eyelid tracking ------------------------------------------------------ |
| 148 | + |
| 149 | + # Initial estimate of 'tracked' eyelid positions |
| 150 | + UPPER_LID_POS = (EYE_DATA['upper_lid_center'][0] + EYE_POS[0], |
| 151 | + EYE_DATA['upper_lid_center'][1] + EYE_POS[1]) |
| 152 | + LOWER_LID_POS = (EYE_DATA['lower_lid_center'][0] + EYE_POS[0], |
| 153 | + EYE_DATA['lower_lid_center'][1] + EYE_POS[1]) |
| 154 | + # Then constrain these to the upper/lower lid motion bounds |
| 155 | + UPPER_LID_POS = (min(max(UPPER_LID_POS[0], |
| 156 | + UPPER_LID_MIN[0]), UPPER_LID_MAX[0]), |
| 157 | + min(max(UPPER_LID_POS[1], |
| 158 | + UPPER_LID_MIN[1]), UPPER_LID_MAX[1])) |
| 159 | + LOWER_LID_POS = (min(max(LOWER_LID_POS[0], |
| 160 | + LOWER_LID_MIN[0]), LOWER_LID_MAX[0]), |
| 161 | + min(max(LOWER_LID_POS[1], |
| 162 | + LOWER_LID_MIN[1]), LOWER_LID_MAX[1])) |
| 163 | + # Then interpolate between bounded tracked position to closed position |
| 164 | + UPPER_LID_POS = (UPPER_LID_POS[0] + RATIO * |
| 165 | + (EYE_DATA['upper_lid_closed'][0] - UPPER_LID_POS[0]), |
| 166 | + UPPER_LID_POS[1] + RATIO * |
| 167 | + (EYE_DATA['upper_lid_closed'][1] - UPPER_LID_POS[1])) |
| 168 | + LOWER_LID_POS = (LOWER_LID_POS[0] + RATIO * |
| 169 | + (EYE_DATA['lower_lid_closed'][0] - LOWER_LID_POS[0]), |
| 170 | + LOWER_LID_POS[1] + RATIO * |
| 171 | + (EYE_DATA['lower_lid_closed'][1] - LOWER_LID_POS[1])) |
| 172 | + |
| 173 | + # Move eye sprites ----------------------------------------------------- |
| 174 | + |
| 175 | + SPRITES[0].x, SPRITES[0].y = (int(EYE_CENTER[0] + EYE_POS[0] + 0.5), |
| 176 | + int(EYE_CENTER[1] + EYE_POS[1] + 0.5)) |
| 177 | + SPRITES[2].x, SPRITES[2].y = (int(UPPER_LID_POS[0] + 0.5), |
| 178 | + int(UPPER_LID_POS[1] + 0.5)) |
| 179 | + SPRITES[1].x, SPRITES[1].y = (int(LOWER_LID_POS[0] + 0.5), |
| 180 | + int(LOWER_LID_POS[1] + 0.5)) |
0 commit comments