Skip to content

Commit 8624cf7

Browse files
committed
Add switch_round and easing functions, update /docs and license
1 parent 249635f commit 8624cf7

File tree

7 files changed

+1389
-0
lines changed

7 files changed

+1389
-0
lines changed
Lines changed: 284 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,284 @@
1+
# SPDX-FileCopyrightText: 2021 Kevin Matocha
2+
#
3+
# SPDX-License-Identifier: MIT
4+
5+
"""
6+
`easing`
7+
================================================================================
8+
9+
Various easing functions in support of the Widget library.
10+
11+
* Author(s): Kevin Matocha
12+
13+
Implementation Notes
14+
--------------------
15+
16+
**Hardware:**
17+
18+
**Software and Dependencies:**
19+
20+
* Adafruit CircuitPython firmware for the supported boards:
21+
https://github.com/adafruit/circuitpython/releases
22+
23+
"""
24+
25+
######
26+
#
27+
# Adapted from: https://github.com/warrenm/AHEasing
28+
#
29+
# View animated examples here: https://easings.net
30+
#
31+
#####
32+
# //
33+
# // easing.c
34+
# //
35+
# // Copyright (c) 2011, Auerhaus Development, LLC
36+
# //
37+
# // This program is free software. It comes without any warranty, to
38+
# // the extent permitted by applicable law. You can redistribute it
39+
# // and/or modify it under the terms of the Do What The Fuck You Want
40+
# // To Public License, Version 2, as published by Sam Hocevar. See
41+
# // http://sam.zoy.org/wtfpl/COPYING for more details.
42+
# //
43+
##
44+
##
45+
# The MIT License (MIT)
46+
#
47+
# Copyright (c) 2021 Kevin Matocha (kmatch98, [email protected])
48+
#
49+
# Permission is hereby granted, free of charge, to any person obtaining a copy
50+
# of this software and associated documentation files (the "Software"), to deal
51+
# in the Software without restriction, including without limitation the rights
52+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
53+
# copies of the Software, and to permit persons to whom the Software is
54+
# furnished to do so, subject to the following conditions:
55+
#
56+
# The above copyright notice and this permission notice shall be included in
57+
# all copies or substantial portions of the Software.
58+
#
59+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
60+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
61+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
62+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
63+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
64+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
65+
# THE SOFTWARE.
66+
#
67+
#
68+
# Easing functions for animation motion
69+
#
70+
# Input value (p) should be between 0.0 (start point) and 1.0 (ending point).
71+
# Output values begin at 0.0 and end at 1.0 but have a specific transfer displacment function
72+
# to give the desired motion response.
73+
#
74+
# Note: Some functions return values < 0.0 or > 1.0 due "springiness".
75+
76+
import math
77+
78+
# Modeled after the line y = x
79+
def LinearInterpolation(p):
80+
return p
81+
82+
83+
# Modeled after the parabola y = x^2
84+
def QuadraticEaseIn(p):
85+
return p * p
86+
87+
88+
# Modeled after the parabola y = -x^2 + 2x
89+
def QuadraticEaseOut(p):
90+
return -(p * (p - 2))
91+
92+
93+
# Modeled after the piecewise quadratic
94+
# y = (1/2)((2x)^2) ; [0, 0.5)
95+
# y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
96+
def QuadraticEaseInOut(p):
97+
if p < 0.5:
98+
return 2 * p * p
99+
return (-2 * p * p) + (4 * p) - 1
100+
101+
102+
# Modeled after the cubic y = x^3
103+
def CubicEaseIn(p):
104+
return p * p * p
105+
106+
107+
# Modeled after the cubic y = (x - 1)^3 + 1
108+
def CubicEaseOut(p):
109+
f = p - 1
110+
return f * f * f + 1
111+
112+
113+
# Modeled after the piecewise cubic
114+
# y = (1/2)((2x)^3) ; [0, 0.5)
115+
# y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
116+
def CubicEaseInOut(p):
117+
if p < 0.5:
118+
return 4 * p * p * p
119+
f = (2 * p) - 2
120+
return 0.5 * f * f * f + 1
121+
122+
123+
# Modeled after the quartic x^4
124+
def QuarticEaseIn(p):
125+
return p * p * p * p
126+
127+
128+
# Modeled after the quartic y = 1 - (x - 1)^4
129+
def QuarticEaseOut(p):
130+
f = p - 1
131+
return f * f * f * (1 - p) + 1
132+
133+
134+
# Modeled after the piecewise quartic
135+
# y = (1/2)((2x)^4) ; [0, 0.5)
136+
# y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
137+
def QuarticEaseInOut(p):
138+
if p < 0.5:
139+
return 8 * p * p * p * p
140+
f = p - 1
141+
return -8 * f * f * f * f + 1
142+
143+
144+
# Modeled after the quintic y = x^5
145+
def QuinticEaseIn(p):
146+
return p * p * p * p * p
147+
148+
149+
# Modeled after the quintic y = (x - 1)^5 + 1
150+
def QuinticEaseOut(p):
151+
f = p - 1
152+
return f * f * f * f * f + 1
153+
154+
155+
# Modeled after the piecewise quintic
156+
# y = (1/2)((2x)^5) ; [0, 0.5)
157+
# y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
158+
def QuinticEaseInOut(p):
159+
if p < 0.5:
160+
return 16 * p * p * p * p * p
161+
f = (2 * p) - 2
162+
return 0.5 * f * f * f * f * f + 1
163+
164+
165+
# Modeled after quarter-cycle of sine wave
166+
def SineEaseIn(p):
167+
return math.sin((p - 1) * math.pi / 2) + 1
168+
169+
170+
# Modeled after quarter-cycle of sine wave (different phase)
171+
def SineEaseOut(p):
172+
return math.sin(p * math.pi / 2)
173+
174+
175+
# Modeled after half sine wave
176+
def SineEaseInOut(p):
177+
return 0.5 * (1 - math.cos(p * math.pi))
178+
179+
180+
# Modeled after shifted quadrant IV of unit circle
181+
def CircularEaseIn(p):
182+
return 1 - math.sqrt(1 - (p * p))
183+
184+
185+
# Modeled after shifted quadrant II of unit circle
186+
def CircularEaseOut(p):
187+
return math.sqrt((2 - p) * p)
188+
189+
190+
# Modeled after the piecewise circular function
191+
# y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
192+
# y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
193+
def CircularEaseInOut(p):
194+
if p < 0.5:
195+
return 0.5 * (1 - math.sqrt(1 - 4 * (p * p)))
196+
return 0.5 * (math.sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1)
197+
198+
199+
# Modeled after the exponential function y = 2^(10(x - 1))
200+
def ExponentialEaseIn(p):
201+
if p == 0:
202+
return p
203+
return math.pow(2, 10 * (p - 1))
204+
205+
206+
# Modeled after the exponential function y = -2^(-10x) + 1
207+
def ExponentialEaseOut(p):
208+
if p == 1:
209+
return p
210+
return 1 - math.pow(2, -10 * p)
211+
212+
213+
# Modeled after the piecewise exponential
214+
# y = (1/2)2^(10(2x - 1)) ; [0,0.5)
215+
# y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
216+
def ExponentialEaseInOut(p):
217+
if (p == 0.0) or (p == 1.0):
218+
return p
219+
if p < 0.5:
220+
return 0.5 * math.pow(2, (20 * p) - 10)
221+
return (-0.5 * math.pow(2, (-20 * p) + 10)) + 1
222+
223+
224+
# Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
225+
def ElasticEaseIn(p):
226+
return math.sin(13 * p * math.pi / 2) * math.pow(2, 10 * (p - 1))
227+
228+
229+
# Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
230+
def ElasticEaseOut(p):
231+
return math.sin(-13 * math.pi / 2 * (p + 1)) * math.pow(2, -10 * p) + 1
232+
233+
234+
# Modeled after the piecewise exponentially-damped sine wave:
235+
# y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
236+
# y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
237+
def ElasticEaseInOut(p):
238+
if p < 0.5:
239+
return 0.5 * math.sin(13 * math.pi * p) * math.pow(2, 10 * ((2 * p) - 1))
240+
return 0.5 * (
241+
math.sin(-13 * math.pi / 2 * ((2 * p - 1) + 1)) * pow(2, -10 * (2 * p - 1)) + 2
242+
)
243+
244+
245+
# Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
246+
def BackEaseIn(p):
247+
return p * p * p - p * math.sin(p * math.pi)
248+
249+
250+
# Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
251+
def BackEaseOut(p):
252+
f = 1 - p
253+
return 1 - (f * f * f - f * math.sin(f * math.pi))
254+
255+
256+
# Modeled after the piecewise overshooting cubic function:
257+
# y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
258+
# y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
259+
def BackEaseInOut(p):
260+
if p < 0.5:
261+
f = 2 * p
262+
return 0.5 * (f * f * f - f * math.sin(f * math.pi))
263+
f = 1 - (2 * p - 1)
264+
return 0.5 * (1 - (f * f * f - f * math.sin(f * math.pi))) + 0.5
265+
266+
267+
def BounceEaseIn(p):
268+
return 1 - BounceEaseOut(1 - p)
269+
270+
271+
def BounceEaseOut(p):
272+
if p < 4 / 11.0:
273+
return (121 * p * p) / 16.0
274+
if p < 8 / 11.0:
275+
return (363 / 40.0 * p * p) - (99 / 10.0 * p) + (17 / 5.0)
276+
if p < 9 / 10.0:
277+
return (4356 / 361.0 * p * p) - (35442 / 1805.0 * p) + 16061 / 1805.0
278+
return (54 / 5.0 * p * p) - (513 / 25.0 * p) + 268 / 25.0
279+
280+
281+
def BounceEaseInOut(p):
282+
if p < 0.5:
283+
return 0.5 * BounceEaseIn(p * 2)
284+
return 0.5 * BounceEaseOut(p * 2 - 1) + 0.5

0 commit comments

Comments
 (0)