forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algorithm_optimization.py
226 lines (189 loc) · 7.79 KB
/
genetic_algorithm_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import random
from collections.abc import Callable, Sequence
from concurrent.futures import ThreadPoolExecutor
import numpy as np
# Parameters
N_POPULATION = 100 # Population size
N_GENERATIONS = 500 # Maximum number of generations
N_SELECTED = 50 # Number of parents selected for the next generation
MUTATION_PROBABILITY = 0.1 # Mutation probability
CROSSOVER_RATE = 0.8 # Probability of crossover
SEARCH_SPACE = (-10, 10) # Search space for the variables
# Random number generator
rng = np.random.default_rng()
class GeneticAlgorithm:
def __init__(
self,
function: Callable[[float, float], float],
bounds: Sequence[tuple[int | float, int | float]],
population_size: int,
generations: int,
mutation_prob: float,
crossover_rate: float,
maximize: bool = True,
) -> None:
self.function = function # Target function to optimize
self.bounds = bounds # Search space bounds (for each variable)
self.population_size = population_size
self.generations = generations
self.mutation_prob = mutation_prob
self.crossover_rate = crossover_rate
self.maximize = maximize
self.dim = len(bounds) # Dimensionality of the function (number of variables)
# Initialize population
self.population = self.initialize_population()
def initialize_population(self) -> list[np.ndarray]:
"""Initialize the population with random individuals within the search space."""
return [
rng.uniform(
low=[self.bounds[j][0] for j in range(self.dim)],
high=[self.bounds[j][1] for j in range(self.dim)],
)
for _ in range(self.population_size)
]
def fitness(self, individual: np.ndarray) -> float:
"""Calculate the fitness value (function value) for an individual."""
value = float(self.function(*individual)) # Ensure fitness is a float
return value if self.maximize else -value # If minimizing, invert the fitness
def select_parents(
self, population_score: list[tuple[np.ndarray, float]]
) -> list[np.ndarray]:
"""Select top N_SELECTED parents based on fitness."""
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
selected_count = min(N_SELECTED, len(population_score))
return [ind for ind, _ in population_score[:selected_count]]
def crossover(
self, parent1: np.ndarray, parent2: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
"""
Perform uniform crossover between two parents to generate offspring.
Args:
parent1 (np.ndarray): The first parent.
parent2 (np.ndarray): The second parent.
Returns:
tuple[np.ndarray, np.ndarray]: The two offspring generated by crossover.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> parent1, parent2 = np.array([1, 2]), np.array([3, 4])
>>> len(ga.crossover(parent1, parent2)) == 2
True
"""
if random.random() < self.crossover_rate:
cross_point = random.randint(1, self.dim - 1)
child1 = np.concatenate((parent1[:cross_point], parent2[cross_point:]))
child2 = np.concatenate((parent2[:cross_point], parent1[cross_point:]))
return child1, child2
return parent1, parent2
def mutate(self, individual: np.ndarray) -> np.ndarray:
"""
Apply mutation to an individual.
Args:
individual (np.ndarray): The individual to mutate.
Returns:
np.ndarray: The mutated individual.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> ind = np.array([1.0, 2.0])
>>> mutated = ga.mutate(ind)
>>> len(mutated) == 2 # Ensure it still has the correct number of dimensions
True
"""
for i in range(self.dim):
if random.random() < self.mutation_prob:
individual[i] = rng.uniform(self.bounds[i][0], self.bounds[i][1])
return individual
def evaluate_population(self) -> list[tuple[np.ndarray, float]]:
"""
Evaluate the fitness of the entire population in parallel.
Returns:
list[tuple[np.ndarray, float]]:
The population with their respective fitness values.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> eval_population = ga.evaluate_population()
>>> len(eval_population) == ga.population_size # Ensure population size
True
>>> all(
... isinstance(ind, tuple) and isinstance(ind[1], float)
... for ind in eval_population
... )
True
"""
with ThreadPoolExecutor() as executor:
return list(
executor.map(
lambda individual: (individual, self.fitness(individual)),
self.population,
)
)
def evolve(self, verbose=True) -> np.ndarray:
"""
Evolve the population over the generations to find the best solution.
Returns:
np.ndarray: The best individual found during the evolution process.
"""
for generation in range(self.generations):
# Evaluate population fitness (multithreaded)
population_score = self.evaluate_population()
# Check the best individual
best_individual = max(
population_score, key=lambda score_tuple: score_tuple[1]
)[0]
best_fitness = self.fitness(best_individual)
# Select parents for next generation
parents = self.select_parents(population_score)
next_generation = []
# Generate offspring using crossover and mutation
for i in range(0, len(parents), 2):
parent1, parent2 = parents[i], parents[(i + 1) % len(parents)]
child1, child2 = self.crossover(parent1, parent2)
next_generation.append(self.mutate(child1))
next_generation.append(self.mutate(child2))
# Ensure population size remains the same
self.population = next_generation[: self.population_size]
if verbose and generation % 10 == 0:
print(f"Generation {generation}: Best Fitness = {best_fitness}")
return best_individual
# Example target function for optimization
def target_function(var_x: float, var_y: float) -> float:
"""
Example target function (parabola) for optimization.
Args:
var_x (float): The x-coordinate.
var_y (float): The y-coordinate.
Returns:
float: The value of the function at (var_x, var_y).
Example:
>>> target_function(0, 0)
0
>>> target_function(1, 1)
2
"""
return var_x**2 + var_y**2 # Simple parabolic surface (minimization)
# Set bounds for the variables (var_x, var_y)
bounds = [(-10, 10), (-10, 10)] # Both var_x and var_y range from -10 to 10
# Instantiate and run the genetic algorithm
ga = GeneticAlgorithm(
function=target_function,
bounds=bounds,
population_size=N_POPULATION,
generations=N_GENERATIONS,
mutation_prob=MUTATION_PROBABILITY,
crossover_rate=CROSSOVER_RATE,
maximize=False, # Minimize the function
)
best_solution = ga.evolve()
print(f"Best solution found: {best_solution}")
print(f"Best fitness (minimum value of function): {target_function(*best_solution)}")