Skip to content

Commit e111acc

Browse files
committed
Make sure all figures display and references resolve
1 parent 697b9d8 commit e111acc

File tree

4 files changed

+11
-11
lines changed

4 files changed

+11
-11
lines changed

source/classification1.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -374,10 +374,10 @@ perim_concav_with_new_point = (
374374
alt.Chart(perim_concav_with_new_point_df)
375375
.mark_point(opacity=0.6, filled=True, size=40)
376376
.encode(
377-
x=alt.X("Perimeter").title="Perimeter (standardized)"),
378-
y=alt.Y("Concavity").title="Concavity (standardized)"),
377+
x=alt.X("Perimeter").title("Perimeter (standardized)"),
378+
y=alt.Y("Concavity").title("Concavity (standardized)"),
379379
color=alt.Color("Class").title("Diagnosis"),
380-
shape=alt.Shape("Class").scale((range=["circle", "circle", "diamond"])),
380+
shape=alt.Shape("Class").scale(range=["circle", "circle", "diamond"]),
381381
size=alt.condition("datum.Class == 'Unknown'", alt.value(100), alt.value(30)),
382382
stroke=alt.condition("datum.Class == 'Unknown'", alt.value('black'), alt.value(None)),
383383
)

source/classification2.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -1161,7 +1161,7 @@ large_accuracies_grid = pd.DataFrame(
11611161
large_accuracy_vs_k = alt.Chart(large_accuracies_grid).mark_line(point=True).encode(
11621162
x=alt.X("param_kneighborsclassifier__n_neighbors").title("Neighbors"),
11631163
y=alt.Y("mean_test_score")
1164-
.scale(domain=(0.60, 0.90)
1164+
.scale(domain=(0.60, 0.90))
11651165
.title("Accuracy estimate")
11661166
)
11671167

source/clustering.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -219,7 +219,7 @@ Scatter plot of standardized bill length versus standardized flipper length.
219219
Based on the visualization
220220
in {numref}`scatter_plot`,
221221
we might suspect there are a few subtypes of penguins within our data set.
222-
We can see roughly 3 groups of observations in {numref}`scatter`,
222+
We can see roughly 3 groups of observations in {numref}`scatter_plot`,
223223
including:
224224

225225
1. a small flipper and bill length group,

source/inference.md

+6-6
Original file line numberDiff line numberDiff line change
@@ -427,7 +427,7 @@ We can visualize the population distribution of the price per night with a histo
427427
428428
population_distribution = alt.Chart(airbnb).mark_bar().encode(
429429
x=alt.X("price")
430-
.bin()
430+
.bin(maxbins=30)
431431
.title("Price per night (Canadian dollars)"),
432432
y=alt.Y("count()", title="Count"),
433433
)
@@ -500,7 +500,7 @@ of our sample.
500500
501501
sample_distribution = alt.Chart(one_sample).mark_bar().encode(
502502
x=alt.X("price")
503-
.bin()
503+
.bin(maxbins=30)
504504
.title("Price per night (Canadian dollars)"),
505505
y=alt.Y("count()").title("Count"),
506506
)
@@ -574,9 +574,9 @@ sample_estimates
574574
575575
sampling_distribution = alt.Chart(sample_estimates).mark_bar().encode(
576576
x=alt.X("sample_mean")
577-
.bin()
577+
.bin(maxbins=30)
578578
.title("Sample mean price per night (Canadian dollars)"),
579-
y=alt.Y("count()").title("Count"),
579+
y=alt.Y("count()").title("Count")
580580
)
581581
582582
sampling_distribution
@@ -943,7 +943,7 @@ one_sample
943943
944944
one_sample_dist = alt.Chart(one_sample).mark_bar().encode(
945945
x=alt.X("price")
946-
.bin()
946+
.bin(maxbins=30)
947947
.title("Price per night (Canadian dollars)"),
948948
y=alt.Y("count()").title("Count"),
949949
)
@@ -983,7 +983,7 @@ we change the `replace` parameter to `True`.
983983
boot1 = one_sample.sample(frac=1, replace=True)
984984
boot1_dist = alt.Chart(boot1).mark_bar().encode(
985985
x=alt.X("price")
986-
.bin()
986+
.bin(maxbins=30)
987987
.title("Price per night (Canadian dollars)"),
988988
y=alt.Y("count()", title="Count"),
989989
)

0 commit comments

Comments
 (0)