You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This deprecates the current behvior when converting tz-aware Series
or Index to an ndarray. Previously, we converted to M8[ns], throwing
away the timezone information. In the future, we will return an
object-dtype array filled with Timestamps, each of which has the correct
tz.
```python
In [1]: import pandas as pd; import numpy as np
In [2]: ser = pd.Series(pd.date_range('2000', periods=2, tz="CET"))
In [3]: np.asarray(ser)
/bin/ipython:1: FutureWarning: Converting timezone-aware DatetimeArray to timezone-naive ndarray with 'datetime64[ns]' dtype. In the future, this will return an ndarray with 'object' dtype where each element is a 'pandas.Timestamp' with the correct 'tz'.
To accept the future behavior, pass 'dtype=object'.
To keep the old behavior, pass 'dtype="datetime64[ns]"'.
#!/Users/taugspurger/Envs/pandas-dev/bin/python3
Out[3]:
array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00.000000000'],
dtype='datetime64[ns]')
```
xref pandas-dev#23569
0 commit comments