Skip to content

Commit 41c8297

Browse files
committed
Purge read_table
1 parent 1168273 commit 41c8297

File tree

1 file changed

+13
-16
lines changed

1 file changed

+13
-16
lines changed

doc/source/io.rst

+13-16
Original file line numberDiff line numberDiff line change
@@ -66,16 +66,13 @@ The pandas I/O API is a set of top level ``reader`` functions accessed like
6666
CSV & Text files
6767
----------------
6868

69-
The two workhorse functions for reading text files (a.k.a. flat files) are
70-
:func:`read_csv` and :func:`read_table`. They both use the same parsing code to
71-
intelligently convert tabular data into a ``DataFrame`` object. See the
72-
:ref:`cookbook<cookbook.csv>` for some advanced strategies.
69+
The workhorse function for reading text files (a.k.a. flat files) is
70+
:func:`read_csv`. See the :ref:`cookbook<cookbook.csv>` for some advanced strategies.
7371

7472
Parsing options
7573
'''''''''''''''
7674

77-
The functions :func:`read_csv` and :func:`read_table` accept the following
78-
common arguments:
75+
:func:`read_csv` accepts the following common arguments:
7976

8077
Basic
8178
+++++
@@ -780,8 +777,8 @@ Date Handling
780777
Specifying Date Columns
781778
+++++++++++++++++++++++
782779

783-
To better facilitate working with datetime data, :func:`read_csv` and
784-
:func:`read_table` use the keyword arguments ``parse_dates`` and ``date_parser``
780+
To better facilitate working with datetime data, :func:`read_csv`
781+
uses the keyword arguments ``parse_dates`` and ``date_parser``
785782
to allow users to specify a variety of columns and date/time formats to turn the
786783
input text data into ``datetime`` objects.
787784

@@ -1434,7 +1431,7 @@ Suppose you have data indexed by two columns:
14341431
14351432
print(open('data/mindex_ex.csv').read())
14361433
1437-
The ``index_col`` argument to ``read_csv`` and ``read_table`` can take a list of
1434+
The ``index_col`` argument to ``read_csv`` can take a list of
14381435
column numbers to turn multiple columns into a ``MultiIndex`` for the index of the
14391436
returned object:
14401437

@@ -1505,8 +1502,8 @@ class of the csv module. For this, you have to specify ``sep=None``.
15051502
15061503
.. ipython:: python
15071504
1508-
print(open('tmp2.sv').read())
1509-
pd.read_csv('tmp2.sv', sep=None, engine='python')
1505+
print(open('tmp2.sv').read())
1506+
pd.read_csv('tmp2.sv', sep=None, engine='python')
15101507
15111508
.. _io.multiple_files:
15121509

@@ -1528,16 +1525,16 @@ rather than reading the entire file into memory, such as the following:
15281525
.. ipython:: python
15291526
15301527
print(open('tmp.sv').read())
1531-
table = pd.read_table('tmp.sv', sep='|')
1528+
table = pd.read_csv('tmp.sv', sep='|')
15321529
table
15331530
15341531
1535-
By specifying a ``chunksize`` to ``read_csv`` or ``read_table``, the return
1532+
By specifying a ``chunksize`` to ``read_csv``, the return
15361533
value will be an iterable object of type ``TextFileReader``:
15371534

15381535
.. ipython:: python
15391536
1540-
reader = pd.read_table('tmp.sv', sep='|', chunksize=4)
1537+
reader = pd.read_csv('tmp.sv', sep='|', chunksize=4)
15411538
reader
15421539
15431540
for chunk in reader:
@@ -1548,7 +1545,7 @@ Specifying ``iterator=True`` will also return the ``TextFileReader`` object:
15481545

15491546
.. ipython:: python
15501547
1551-
reader = pd.read_table('tmp.sv', sep='|', iterator=True)
1548+
reader = pd.read_csv('tmp.sv', sep='|', iterator=True)
15521549
reader.get_chunk(5)
15531550
15541551
.. ipython:: python
@@ -3067,7 +3064,7 @@ Clipboard
30673064

30683065
A handy way to grab data is to use the :meth:`~DataFrame.read_clipboard` method,
30693066
which takes the contents of the clipboard buffer and passes them to the
3070-
``read_table`` method. For instance, you can copy the following text to the
3067+
``read_csv`` method. For instance, you can copy the following text to the
30713068
clipboard (CTRL-C on many operating systems):
30723069

30733070
.. code-block:: python

0 commit comments

Comments
 (0)